Current File : //usr/local/emps/share/man/man7/EVP_PKEY-EC.7ossl |
.\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.28)
.\"
.\" Standard preamble:
.\" ========================================================================
.de Sp \" Vertical space (when we can't use .PP)
.if t .sp .5v
.if n .sp
..
.de Vb \" Begin verbatim text
.ft CW
.nf
.ne \\$1
..
.de Ve \" End verbatim text
.ft R
.fi
..
.\" Set up some character translations and predefined strings. \*(-- will
.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
.\" double quote, and \*(R" will give a right double quote. \*(C+ will
.\" give a nicer C++. Capital omega is used to do unbreakable dashes and
.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
.\" nothing in troff, for use with C<>.
.tr \(*W-
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
.ie n \{\
. ds -- \(*W-
. ds PI pi
. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
. ds L" ""
. ds R" ""
. ds C` ""
. ds C' ""
'br\}
.el\{\
. ds -- \|\(em\|
. ds PI \(*p
. ds L" ``
. ds R" ''
. ds C`
. ds C'
'br\}
.\"
.\" Escape single quotes in literal strings from groff's Unicode transform.
.ie \n(.g .ds Aq \(aq
.el .ds Aq '
.\"
.\" If the F register is turned on, we'll generate index entries on stderr for
.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
.\" entries marked with X<> in POD. Of course, you'll have to process the
.\" output yourself in some meaningful fashion.
.\"
.\" Avoid warning from groff about undefined register 'F'.
.de IX
..
.nr rF 0
.if \n(.g .if rF .nr rF 1
.if (\n(rF:(\n(.g==0)) \{
. if \nF \{
. de IX
. tm Index:\\$1\t\\n%\t"\\$2"
..
. if !\nF==2 \{
. nr % 0
. nr F 2
. \}
. \}
.\}
.rr rF
.\"
.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
.\" Fear. Run. Save yourself. No user-serviceable parts.
. \" fudge factors for nroff and troff
.if n \{\
. ds #H 0
. ds #V .8m
. ds #F .3m
. ds #[ \f1
. ds #] \fP
.\}
.if t \{\
. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
. ds #V .6m
. ds #F 0
. ds #[ \&
. ds #] \&
.\}
. \" simple accents for nroff and troff
.if n \{\
. ds ' \&
. ds ` \&
. ds ^ \&
. ds , \&
. ds ~ ~
. ds /
.\}
.if t \{\
. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
.\}
. \" troff and (daisy-wheel) nroff accents
.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
.ds ae a\h'-(\w'a'u*4/10)'e
.ds Ae A\h'-(\w'A'u*4/10)'E
. \" corrections for vroff
.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
. \" for low resolution devices (crt and lpr)
.if \n(.H>23 .if \n(.V>19 \
\{\
. ds : e
. ds 8 ss
. ds o a
. ds d- d\h'-1'\(ga
. ds D- D\h'-1'\(hy
. ds th \o'bp'
. ds Th \o'LP'
. ds ae ae
. ds Ae AE
.\}
.rm #[ #] #H #V #F C
.\" ========================================================================
.\"
.IX Title "EVP_PKEY-EC 7ossl"
.TH EVP_PKEY-EC 7ossl "2022-11-01" "3.0.7" "OpenSSL"
.\" For nroff, turn off justification. Always turn off hyphenation; it makes
.\" way too many mistakes in technical documents.
.if n .ad l
.nh
.SH "NAME"
EVP_PKEY\-EC,
EVP_KEYMGMT\-EC
\&\- EVP_PKEY EC keytype and algorithm support
.SH "DESCRIPTION"
.IX Header "DESCRIPTION"
The \fB\s-1EC\s0\fR keytype is implemented in OpenSSL's default provider.
.SS "Common \s-1EC\s0 parameters"
.IX Subsection "Common EC parameters"
The normal way of specifying domain parameters for an \s-1EC\s0 curve is via the
curve name \*(L"group\*(R". For curves with no curve name, explicit parameters can be
used that specify \*(L"field-type\*(R", \*(L"p\*(R", \*(L"a\*(R", \*(L"b\*(R", \*(L"generator\*(R" and \*(L"order\*(R".
Explicit parameters are supported for backwards compability reasons, but they
are not compliant with multiple standards (including \s-1RFC5915\s0) which only allow
named curves.
.PP
The following KeyGen/Gettable/Import/Export types are available for the
built-in \s-1EC\s0 algorithm:
.ie n .IP """group"" (\fB\s-1OSSL_PKEY_PARAM_GROUP_NAME\s0\fR) <\s-1UTF8\s0 string>" 4
.el .IP "``group'' (\fB\s-1OSSL_PKEY_PARAM_GROUP_NAME\s0\fR) <\s-1UTF8\s0 string>" 4
.IX Item "group (OSSL_PKEY_PARAM_GROUP_NAME) <UTF8 string>"
The curve name.
.ie n .IP """field-type"" (\fB\s-1OSSL_PKEY_PARAM_EC_FIELD_TYPE\s0\fR) <\s-1UTF8\s0 string>" 4
.el .IP "``field-type'' (\fB\s-1OSSL_PKEY_PARAM_EC_FIELD_TYPE\s0\fR) <\s-1UTF8\s0 string>" 4
.IX Item "field-type (OSSL_PKEY_PARAM_EC_FIELD_TYPE) <UTF8 string>"
The value should be either \*(L"prime-field\*(R" or \*(L"characteristic-two-field\*(R",
which correspond to prime field Fp and binary field F2^m.
.ie n .IP """p"" (\fB\s-1OSSL_PKEY_PARAM_EC_P\s0\fR) <unsigned integer>" 4
.el .IP "``p'' (\fB\s-1OSSL_PKEY_PARAM_EC_P\s0\fR) <unsigned integer>" 4
.IX Item "p (OSSL_PKEY_PARAM_EC_P) <unsigned integer>"
For a curve over Fp \fIp\fR is the prime for the field. For a curve over F2^m \fIp\fR
represents the irreducible polynomial \- each bit represents a term in the
polynomial. Therefore, there will either be three or five bits set dependent on
whether the polynomial is a trinomial or a pentanomial.
.ie n .IP """a"" (\fB\s-1OSSL_PKEY_PARAM_EC_A\s0\fR) <unsigned integer>" 4
.el .IP "``a'' (\fB\s-1OSSL_PKEY_PARAM_EC_A\s0\fR) <unsigned integer>" 4
.IX Item "a (OSSL_PKEY_PARAM_EC_A) <unsigned integer>"
.PD 0
.ie n .IP """b"" (\fB\s-1OSSL_PKEY_PARAM_EC_B\s0\fR) <unsigned integer>" 4
.el .IP "``b'' (\fB\s-1OSSL_PKEY_PARAM_EC_B\s0\fR) <unsigned integer>" 4
.IX Item "b (OSSL_PKEY_PARAM_EC_B) <unsigned integer>"
.ie n .IP """seed"" (\fB\s-1OSSL_PKEY_PARAM_EC_SEED\s0\fR) <octet string>" 4
.el .IP "``seed'' (\fB\s-1OSSL_PKEY_PARAM_EC_SEED\s0\fR) <octet string>" 4
.IX Item "seed (OSSL_PKEY_PARAM_EC_SEED) <octet string>"
.PD
\&\fIa\fR and \fIb\fR represents the coefficients of the curve
For Fp: y^2 mod p = x^3 +ax + b mod p \s-1OR\s0
For F2^m: y^2 + xy = x^3 + ax^2 + b
.Sp
\&\fIseed\fR is an optional value that is for information purposes only.
It represents the random number seed used to generate the coefficient \fIb\fR from a
random number.
.ie n .IP """generator"" (\fB\s-1OSSL_PKEY_PARAM_EC_GENERATOR\s0\fR) <octet string>" 4
.el .IP "``generator'' (\fB\s-1OSSL_PKEY_PARAM_EC_GENERATOR\s0\fR) <octet string>" 4
.IX Item "generator (OSSL_PKEY_PARAM_EC_GENERATOR) <octet string>"
.PD 0
.ie n .IP """order"" (\fB\s-1OSSL_PKEY_PARAM_EC_ORDER\s0\fR) <unsigned integer>" 4
.el .IP "``order'' (\fB\s-1OSSL_PKEY_PARAM_EC_ORDER\s0\fR) <unsigned integer>" 4
.IX Item "order (OSSL_PKEY_PARAM_EC_ORDER) <unsigned integer>"
.ie n .IP """cofactor"" (\fB\s-1OSSL_PKEY_PARAM_EC_COFACTOR\s0\fR) <unsigned integer>" 4
.el .IP "``cofactor'' (\fB\s-1OSSL_PKEY_PARAM_EC_COFACTOR\s0\fR) <unsigned integer>" 4
.IX Item "cofactor (OSSL_PKEY_PARAM_EC_COFACTOR) <unsigned integer>"
.PD
The \fIgenerator\fR is a well defined point on the curve chosen for cryptographic
operations. The encoding conforms with Sec. 2.3.3 of the \s-1SECG SEC 1 \s0(\*(L"Elliptic Curve
Cryptography\*(R") standard. See \fIEC_POINT_oct2point()\fR.
Integers used for point multiplications will be between 0 and
\&\fIorder\fR \- 1.
\&\fIcofactor\fR is an optional value.
\&\fIorder\fR multiplied by the \fIcofactor\fR gives the number of points on the curve.
.ie n .IP """decoded-from-explicit"" (\fB\s-1OSSL_PKEY_PARAM_EC_DECODED_FROM_EXPLICIT_PARAMS\s0\fR) <integer>" 4
.el .IP "``decoded-from-explicit'' (\fB\s-1OSSL_PKEY_PARAM_EC_DECODED_FROM_EXPLICIT_PARAMS\s0\fR) <integer>" 4
.IX Item "decoded-from-explicit (OSSL_PKEY_PARAM_EC_DECODED_FROM_EXPLICIT_PARAMS) <integer>"
Gets a flag indicating wether the key or parameters were decoded from explicit
curve parameters. Set to 1 if so or 0 if a named curve was used.
.ie n .IP """use-cofactor-flag"" (\fB\s-1OSSL_PKEY_PARAM_USE_COFACTOR_ECDH\s0\fR) <integer>" 4
.el .IP "``use-cofactor-flag'' (\fB\s-1OSSL_PKEY_PARAM_USE_COFACTOR_ECDH\s0\fR) <integer>" 4
.IX Item "use-cofactor-flag (OSSL_PKEY_PARAM_USE_COFACTOR_ECDH) <integer>"
Enable Cofactor \s-1DH \s0(\s-1ECC CDH\s0) if this value is 1, otherwise it uses normal \s-1EC DH\s0
if the value is zero. The cofactor variant multiplies the shared secret by the
\&\s-1EC\s0 curve's cofactor (note for some curves the cofactor is 1).
.ie n .IP """encoding"" (\fB\s-1OSSL_PKEY_PARAM_EC_ENCODING\s0\fR) <\s-1UTF8\s0 string>" 4
.el .IP "``encoding'' (\fB\s-1OSSL_PKEY_PARAM_EC_ENCODING\s0\fR) <\s-1UTF8\s0 string>" 4
.IX Item "encoding (OSSL_PKEY_PARAM_EC_ENCODING) <UTF8 string>"
Set the format used for serializing the \s-1EC\s0 group parameters.
Valid values are \*(L"explicit\*(R" or \*(L"named_curve\*(R". The default value is \*(L"named_curve\*(R".
.ie n .IP """point-format"" (\fB\s-1OSSL_PKEY_PARAM_EC_POINT_CONVERSION_FORMAT\s0\fR) <\s-1UTF8\s0 string>" 4
.el .IP "``point-format'' (\fB\s-1OSSL_PKEY_PARAM_EC_POINT_CONVERSION_FORMAT\s0\fR) <\s-1UTF8\s0 string>" 4
.IX Item "point-format (OSSL_PKEY_PARAM_EC_POINT_CONVERSION_FORMAT) <UTF8 string>"
Sets or gets the point_conversion_form for the \fIkey\fR. For a description of
point_conversion_forms please see \fIEC_POINT_new\fR\|(3). Valid values are
\&\*(L"uncompressed\*(R" or \*(L"compressed\*(R". The default value is \*(L"uncompressed\*(R".
.ie n .IP """group-check"" (\fB\s-1OSSL_PKEY_PARAM_EC_GROUP_CHECK_TYPE\s0\fR) <\s-1UTF8\s0 string>" 4
.el .IP "``group-check'' (\fB\s-1OSSL_PKEY_PARAM_EC_GROUP_CHECK_TYPE\s0\fR) <\s-1UTF8\s0 string>" 4
.IX Item "group-check (OSSL_PKEY_PARAM_EC_GROUP_CHECK_TYPE) <UTF8 string>"
Sets or Gets the type of group check done when \fIEVP_PKEY_param_check()\fR is called.
Valid values are \*(L"default\*(R", \*(L"named\*(R" and \*(L"named-nist\*(R".
The \*(L"named\*(R" type checks that the domain parameters match the inbuilt curve parameters,
\&\*(L"named-nist\*(R" is similiar but also checks that the named curve is a nist curve.
The \*(L"default\*(R" type does domain parameter validation for the OpenSSL default provider,
but is equivalent to \*(L"named-nist\*(R" for the OpenSSL \s-1FIPS\s0 provider.
.ie n .IP """include-public"" (\fB\s-1OSSL_PKEY_PARAM_EC_INCLUDE_PUBLIC\s0\fR) <integer>" 4
.el .IP "``include-public'' (\fB\s-1OSSL_PKEY_PARAM_EC_INCLUDE_PUBLIC\s0\fR) <integer>" 4
.IX Item "include-public (OSSL_PKEY_PARAM_EC_INCLUDE_PUBLIC) <integer>"
Setting this value to 0 indicates that the public key should not be included when
encoding the private key. The default value of 1 will include the public key.
.Sp
See also \s-1\fIEVP_KEYEXCH\-ECDH\s0\fR\|(7) for the related
\&\fB\s-1OSSL_EXCHANGE_PARAM_EC_ECDH_COFACTOR_MODE\s0\fR parameter that can be set on a
per-operation basis.
.ie n .IP """pub"" (\fB\s-1OSSL_PKEY_PARAM_PUB_KEY\s0\fR) <octet string>" 4
.el .IP "``pub'' (\fB\s-1OSSL_PKEY_PARAM_PUB_KEY\s0\fR) <octet string>" 4
.IX Item "pub (OSSL_PKEY_PARAM_PUB_KEY) <octet string>"
The public key value in encoded \s-1EC\s0 point format. This parameter is used
when importing or exporting the public key value with the \fIEVP_PKEY_fromdata()\fR
and \fIEVP_PKEY_todata()\fR functions.
.ie n .IP """priv"" (\fB\s-1OSSL_PKEY_PARAM_PRIV_KEY\s0\fR) <unsigned integer>" 4
.el .IP "``priv'' (\fB\s-1OSSL_PKEY_PARAM_PRIV_KEY\s0\fR) <unsigned integer>" 4
.IX Item "priv (OSSL_PKEY_PARAM_PRIV_KEY) <unsigned integer>"
The private key value.
.ie n .IP """encoded-pub-key"" (\fB\s-1OSSL_PKEY_PARAM_ENCODED_PUBLIC_KEY\s0\fR) <octet string>" 4
.el .IP "``encoded-pub-key'' (\fB\s-1OSSL_PKEY_PARAM_ENCODED_PUBLIC_KEY\s0\fR) <octet string>" 4
.IX Item "encoded-pub-key (OSSL_PKEY_PARAM_ENCODED_PUBLIC_KEY) <octet string>"
Used for getting and setting the encoding of an \s-1EC\s0 public key. The public key
is expected to be a point conforming to Sec. 2.3.4 of the \s-1SECG SEC 1 \s0(\*(L"Elliptic
Curve Cryptography\*(R") standard.
.ie n .IP """qx"" (\fB\s-1OSSL_PKEY_PARAM_EC_PUB_X\s0\fR) <unsigned integer>" 4
.el .IP "``qx'' (\fB\s-1OSSL_PKEY_PARAM_EC_PUB_X\s0\fR) <unsigned integer>" 4
.IX Item "qx (OSSL_PKEY_PARAM_EC_PUB_X) <unsigned integer>"
Used for getting the \s-1EC\s0 public key X component.
.ie n .IP """qy"" (\fB\s-1OSSL_PKEY_PARAM_EC_PUB_Y\s0\fR) <unsigned integer>" 4
.el .IP "``qy'' (\fB\s-1OSSL_PKEY_PARAM_EC_PUB_Y\s0\fR) <unsigned integer>" 4
.IX Item "qy (OSSL_PKEY_PARAM_EC_PUB_Y) <unsigned integer>"
Used for getting the \s-1EC\s0 public key Y component.
.IP "(\fB\s-1OSSL_PKEY_PARAM_DEFAULT_DIGEST\s0\fR) <\s-1UTF8\s0 string>" 4
.IX Item "(OSSL_PKEY_PARAM_DEFAULT_DIGEST) <UTF8 string>"
Getter that returns the default digest name.
(Currently returns \*(L"\s-1SHA256\*(R"\s0 as of OpenSSL 3.0).
.PP
The following Gettable types are also available for the built-in \s-1EC\s0 algorithm:
.ie n .IP """basis-type"" (\fB\s-1OSSL_PKEY_PARAM_EC_CHAR2_TYPE\s0\fR) <\s-1UTF8\s0 string>" 4
.el .IP "``basis-type'' (\fB\s-1OSSL_PKEY_PARAM_EC_CHAR2_TYPE\s0\fR) <\s-1UTF8\s0 string>" 4
.IX Item "basis-type (OSSL_PKEY_PARAM_EC_CHAR2_TYPE) <UTF8 string>"
Supports the values \*(L"tpBasis\*(R" for a trinomial or \*(L"ppBasis\*(R" for a pentanomial.
This field is only used for a binary field F2^m.
.ie n .IP """m"" (\fB\s-1OSSL_PKEY_PARAM_EC_CHAR2_M\s0\fR) <integer>" 4
.el .IP "``m'' (\fB\s-1OSSL_PKEY_PARAM_EC_CHAR2_M\s0\fR) <integer>" 4
.IX Item "m (OSSL_PKEY_PARAM_EC_CHAR2_M) <integer>"
.PD 0
.ie n .IP """tp"" (\fB\s-1OSSL_PKEY_PARAM_EC_CHAR2_TP_BASIS\s0\fR) <integer>" 4
.el .IP "``tp'' (\fB\s-1OSSL_PKEY_PARAM_EC_CHAR2_TP_BASIS\s0\fR) <integer>" 4
.IX Item "tp (OSSL_PKEY_PARAM_EC_CHAR2_TP_BASIS) <integer>"
.ie n .IP """k1"" (\fB\s-1OSSL_PKEY_PARAM_EC_CHAR2_PP_K1\s0\fR) <integer>" 4
.el .IP "``k1'' (\fB\s-1OSSL_PKEY_PARAM_EC_CHAR2_PP_K1\s0\fR) <integer>" 4
.IX Item "k1 (OSSL_PKEY_PARAM_EC_CHAR2_PP_K1) <integer>"
.ie n .IP """k2"" (\fB\s-1OSSL_PKEY_PARAM_EC_CHAR2_PP_K2\s0\fR) <integer>" 4
.el .IP "``k2'' (\fB\s-1OSSL_PKEY_PARAM_EC_CHAR2_PP_K2\s0\fR) <integer>" 4
.IX Item "k2 (OSSL_PKEY_PARAM_EC_CHAR2_PP_K2) <integer>"
.ie n .IP """k3"" (\fB\s-1OSSL_PKEY_PARAM_EC_CHAR2_PP_K3\s0\fR) <integer>" 4
.el .IP "``k3'' (\fB\s-1OSSL_PKEY_PARAM_EC_CHAR2_PP_K3\s0\fR) <integer>" 4
.IX Item "k3 (OSSL_PKEY_PARAM_EC_CHAR2_PP_K3) <integer>"
.PD
These fields are only used for a binary field F2^m.
\&\fIm\fR is the degree of the binary field.
.Sp
\&\fItp\fR is the middle bit of a trinomial so its value must be in the
range m > tp > 0.
.Sp
\&\fIk1\fR, \fIk2\fR and \fIk3\fR are used to get the middle bits of a pentanomial such
that m > k3 > k2 > k1 > 0
.SS "\s-1EC\s0 key validation"
.IX Subsection "EC key validation"
For \s-1EC\s0 keys, \fIEVP_PKEY_param_check\fR\|(3) behaves in the following way:
For the OpenSSL default provider it uses either
\&\fIEC_GROUP_check\fR\|(3) or \fIEC_GROUP_check_named_curve\fR\|(3) depending on the flag
\&\s-1EC_FLAG_CHECK_NAMED_GROUP.\s0
The OpenSSL \s-1FIPS\s0 provider uses \fIEC_GROUP_check_named_curve\fR\|(3) in order to
conform to SP800\-56Ar3 \fIAssurances of Domain-Parameter Validity\fR.
.PP
For \s-1EC\s0 keys, \fIEVP_PKEY_param_check_quick\fR\|(3) is equivalent to
\&\fIEVP_PKEY_param_check\fR\|(3).
.PP
For \s-1EC\s0 keys, \fIEVP_PKEY_public_check\fR\|(3) and \fIEVP_PKEY_public_check_quick\fR\|(3)
conform to SP800\-56Ar3 \fI\s-1ECC\s0 Full Public-Key Validation\fR and
\&\fI\s-1ECC\s0 Partial Public-Key Validation\fR respectively.
.PP
For \s-1EC\s0 Keys, \fIEVP_PKEY_private_check\fR\|(3) and \fIEVP_PKEY_pairwise_check\fR\|(3)
conform to SP800\-56Ar3 \fIPrivate key validity\fR and
\&\fIOwner Assurance of Pair-wise Consistency\fR respectively.
.SH "EXAMPLES"
.IX Header "EXAMPLES"
An \fB\s-1EVP_PKEY\s0\fR context can be obtained by calling:
.PP
.Vb 2
\& EVP_PKEY_CTX *pctx =
\& EVP_PKEY_CTX_new_from_name(NULL, "EC", NULL);
.Ve
.PP
An \fB\s-1EVP_PKEY\s0\fR \s-1ECDSA\s0 or \s-1ECDH\s0 key can be generated with a \*(L"P\-256\*(R" named group by
calling:
.PP
.Vb 1
\& pkey = EVP_EC_gen("P\-256");
.Ve
.PP
or like this:
.PP
.Vb 4
\& EVP_PKEY *key = NULL;
\& OSSL_PARAM params[2];
\& EVP_PKEY_CTX *gctx =
\& EVP_PKEY_CTX_new_from_name(NULL, "EC", NULL);
\&
\& EVP_PKEY_keygen_init(gctx);
\&
\& params[0] = OSSL_PARAM_construct_utf8_string(OSSL_PKEY_PARAM_GROUP_NAME,
\& "P\-256", 0);
\& params[1] = OSSL_PARAM_construct_end();
\& EVP_PKEY_CTX_set_params(gctx, params);
\&
\& EVP_PKEY_generate(gctx, &key);
\&
\& EVP_PKEY_print_private(bio_out, key, 0, NULL);
\& ...
\& EVP_PKEY_free(key);
\& EVP_PKEY_CTX_free(gctx);
.Ve
.PP
An \fB\s-1EVP_PKEY\s0\fR \s-1EC CDH \s0(Cofactor Diffie-Hellman) key can be generated with a
\&\*(L"K\-571\*(R" named group by calling:
.PP
.Vb 5
\& int use_cdh = 1;
\& EVP_PKEY *key = NULL;
\& OSSL_PARAM params[3];
\& EVP_PKEY_CTX *gctx =
\& EVP_PKEY_CTX_new_from_name(NULL, "EC", NULL);
\&
\& EVP_PKEY_keygen_init(gctx);
\&
\& params[0] = OSSL_PARAM_construct_utf8_string(OSSL_PKEY_PARAM_GROUP_NAME,
\& "K\-571", 0);
\& /*
\& * This curve has a cofactor that is not 1 \- so setting CDH mode changes
\& * the behaviour. For many curves the cofactor is 1 \- so setting this has
\& * no effect.
\& */
\& params[1] = OSSL_PARAM_construct_int(OSSL_PKEY_PARAM_USE_COFACTOR_ECDH,
\& &use_cdh);
\& params[2] = OSSL_PARAM_construct_end();
\& EVP_PKEY_CTX_set_params(gctx, params);
\&
\& EVP_PKEY_generate(gctx, &key);
\& EVP_PKEY_print_private(bio_out, key, 0, NULL);
\& ...
\& EVP_PKEY_free(key);
\& EVP_PKEY_CTX_free(gctx);
.Ve
.SH "SEE ALSO"
.IX Header "SEE ALSO"
\&\fIEVP_EC_gen\fR\|(3),
\&\s-1\fIEVP_KEYMGMT\s0\fR\|(3),
\&\s-1\fIEVP_PKEY\s0\fR\|(3),
\&\fIprovider\-keymgmt\fR\|(7),
\&\s-1\fIEVP_SIGNATURE\-ECDSA\s0\fR\|(7),
\&\s-1\fIEVP_KEYEXCH\-ECDH\s0\fR\|(7)
.SH "COPYRIGHT"
.IX Header "COPYRIGHT"
Copyright 2020\-2022 The OpenSSL Project Authors. All Rights Reserved.
.PP
Licensed under the Apache License 2.0 (the \*(L"License\*(R"). You may not use
this file except in compliance with the License. You can obtain a copy
in the file \s-1LICENSE\s0 in the source distribution or at
<https://www.openssl.org/source/license.html>.