Current File : /home/inlingua/miniconda3/lib/python3.12/site-packages/conda/auxlib/decorators.py |
from collections.abc import Hashable
from types import GeneratorType
from functools import wraps
# TODO: spend time filling out functionality and make these more robust
def memoizemethod(method):
"""
Decorator to cause a method to cache it's results in self for each
combination of inputs and return the cached result on subsequent calls.
Does not support named arguments or arg values that are not hashable.
>>> class Foo (object):
... @memoizemethod
... def foo(self, x, y=0):
... print('running method with', x, y)
... return x + y + 3
...
>>> foo1 = Foo()
>>> foo2 = Foo()
>>> foo1.foo(10)
running method with 10 0
13
>>> foo1.foo(10)
13
>>> foo2.foo(11, y=7)
running method with 11 7
21
>>> foo2.foo(11)
running method with 11 0
14
>>> foo2.foo(11, y=7)
21
>>> class Foo (object):
... def __init__(self, lower):
... self.lower = lower
... @memoizemethod
... def range_tuple(self, upper):
... print('running function')
... return tuple(i for i in range(self.lower, upper))
... @memoizemethod
... def range_iter(self, upper):
... print('running function')
... return (i for i in range(self.lower, upper))
...
>>> foo = Foo(3)
>>> foo.range_tuple(6)
running function
(3, 4, 5)
>>> foo.range_tuple(7)
running function
(3, 4, 5, 6)
>>> foo.range_tuple(6)
(3, 4, 5)
>>> foo.range_iter(6)
Traceback (most recent call last):
TypeError: Can't memoize a generator or non-hashable object!
"""
@wraps(method)
def _wrapper(self, *args, **kwargs):
# NOTE: a __dict__ check is performed here rather than using the
# built-in hasattr function because hasattr will look up to an object's
# class if the attr is not directly found in the object's dict. That's
# bad for this if the class itself has a memoized classmethod for
# example that has been called before the memoized instance method,
# then the instance method will use the class's result cache, causing
# its results to be globally stored rather than on a per instance
# basis.
if '_memoized_results' not in self.__dict__:
self._memoized_results = {}
memoized_results = self._memoized_results
key = (method.__name__, args, tuple(sorted(kwargs.items())))
if key in memoized_results:
return memoized_results[key]
else:
try:
result = method(self, *args, **kwargs)
except KeyError as e:
if '__wrapped__' in str(e):
result = None # is this the right thing to do? happened during py3 conversion
else:
raise
if isinstance(result, GeneratorType) or not isinstance(result, Hashable):
raise TypeError("Can't memoize a generator or non-hashable object!")
return memoized_results.setdefault(key, result)
return _wrapper
def clear_memoized_methods(obj, *method_names):
"""
Clear the memoized method or @memoizedproperty results for the given
method names from the given object.
>>> v = [0]
>>> def inc():
... v[0] += 1
... return v[0]
...
>>> class Foo(object):
... @memoizemethod
... def foo(self):
... return inc()
... @memoizedproperty
... def g(self):
... return inc()
...
>>> f = Foo()
>>> f.foo(), f.foo()
(1, 1)
>>> clear_memoized_methods(f, 'foo')
>>> (f.foo(), f.foo(), f.g, f.g)
(2, 2, 3, 3)
>>> (f.foo(), f.foo(), f.g, f.g)
(2, 2, 3, 3)
>>> clear_memoized_methods(f, 'g', 'no_problem_if_undefined')
>>> f.g, f.foo(), f.g
(4, 2, 4)
>>> f.foo()
2
"""
for key in list(getattr(obj, '_memoized_results', {}).keys()):
# key[0] is the method name
if key[0] in method_names:
del obj._memoized_results[key]
property_dict = obj._cache_
for prop in method_names:
inner_attname = '__%s' % prop
if inner_attname in property_dict:
del property_dict[inner_attname]
def memoizedproperty(func):
"""
Decorator to cause a method to cache it's results in self for each
combination of inputs and return the cached result on subsequent calls.
Does not support named arguments or arg values that are not hashable.
>>> class Foo (object):
... _x = 1
... @memoizedproperty
... def foo(self):
... self._x += 1
... print('updating and returning {0}'.format(self._x))
... return self._x
...
>>> foo1 = Foo()
>>> foo2 = Foo()
>>> foo1.foo
updating and returning 2
2
>>> foo1.foo
2
>>> foo2.foo
updating and returning 2
2
>>> foo1.foo
2
"""
inner_attname = '__%s' % func.__name__
def new_fget(self):
if not hasattr(self, '_cache_'):
self._cache_ = {}
cache = self._cache_
if inner_attname not in cache:
cache[inner_attname] = func(self)
return cache[inner_attname]
return property(new_fget)
class classproperty: # pylint: disable=C0103
# from celery.five
def __init__(self, getter=None, setter=None):
if getter is not None and not isinstance(getter, classmethod):
getter = classmethod(getter)
if setter is not None and not isinstance(setter, classmethod):
setter = classmethod(setter)
self.__get = getter
self.__set = setter
info = getter.__get__(object) # just need the info attrs.
self.__doc__ = info.__doc__
self.__name__ = info.__name__
self.__module__ = info.__module__
def __get__(self, obj, type_=None):
if obj and type_ is None:
type_ = obj.__class__
return self.__get.__get__(obj, type_)()
def __set__(self, obj, value):
if obj is None:
return self
return self.__set.__get__(obj)(value)
def setter(self, setter):
return self.__class__(self.__get, setter)
# memoize & clear:
# class method
# function
# classproperty
# property
# staticproperty?
# memoizefunction
# memoizemethod
# memoizedproperty