Current File : /home/inlingua/miniconda3/share/info/gprofng.info
This is gprofng.info, produced by makeinfo version 6.8 from
gprofng.texi.

This document is the manual for gprofng, last updated 5 January 2023.

   Copyright (C) 2022-2023 Free Software Foundation, Inc.

   Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections, with no Front-Cover texts, and with no Back-Cover
Texts.  A copy of the license is included in the section entitled "GNU
Free Documentation License."

INFO-DIR-SECTION Software development
START-INFO-DIR-ENTRY
* gprofng: (gprofng).                    The next generation profiling tool for Linux
END-INFO-DIR-ENTRY


File: gprofng.info,  Node: Top,  Next: Introduction,  Up: (dir)

GNU Gprofng
***********

This document is the manual for gprofng, last updated 5 January 2023.

   Copyright (C) 2022-2023 Free Software Foundation, Inc.

   Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections, with no Front-Cover texts, and with no Back-Cover
Texts.  A copy of the license is included in the section entitled "GNU
Free Documentation License."

* Menu:

* Introduction::           About this manual.
* Overview::               A brief overview of gprofng.
* A Mini Tutorial::        A short tutorial covering the key features.
* Terminology::            Various concepts and some terminology explained.
* Other Document Formats:: How to create this document in other formats.
* Index::                  The index.


-- The Detailed Node Listing --

Introduction

Overview

* Main Features::                     A high level overview.
* Sampling versus Tracing::           The pros and cons of sampling versus tracing.
* Steps Needed to Create a Profile::  How to create a profile.

A Mini Tutorial

* Getting Started::                 The basics of profiling with gprofng().
* Support for Multithreading::      Commands specific to multithreaded applications.
* Viewing Multiple Experiments::    Analyze multiple experiments.
* Profile Hardware Event Counters:: How to use hardware event counters.
* Java Profiling::                  How to profile a Java application.

Terminology

* The Program Counter::                    What is a Program Counter?
* Inclusive and Exclusive Metrics::        An explanation of inclusive and exclusive metrics.
* Metric Definitions::                     Definitions associated with metrics.
* The Viewmode::                           Select the way call stacks are presented.
* The Selection List::                     How to define a selection.
* Load Objects and Functions::             The components in an application.
* The Concept of a CPU in gprofng:: The definition of a CPU.
* Hardware Event Counters Explained::      What are event counters?
* apath::                                  Our generic definition of a path.




File: gprofng.info,  Node: Introduction,  Next: Overview,  Prev: Top,  Up: Top

1 Introduction
**************

The gprofng tool is the next generation profiler for Linux.  It consists
of various commands to generate and display profile information.

   This manual starts with a tutorial how to create and interpret a
profile.  This part is highly practical and has the goal to get users up
to speed as quickly as possible.  As soon as possible, we would like to
show you how to get your first profile on your screen.

   This is followed by more examples, covering many of the features.  At
the end of this tutorial, you should feel confident enough to tackle the
more complex tasks.

   In a future update a more formal reference manual will be included as
well.  Since even in this tutorial we use certain terminology, we have
included a chapter with descriptions at the end.  In case you encounter
unfamiliar wordings or terminology, please check this chapter.

   One word of caution.  In several cases we had to somewhat tweak the
screen output in order to make it fit.  This is why the output may look
somewhat different when you try things yourself.

   For now, we wish you a smooth profiling experience with gprofng and
good luck tackling performance bottlenecks.


File: gprofng.info,  Node: Overview,  Next: A Mini Tutorial,  Prev: Introduction,  Up: Top

2 A Brief Overview of gprofng
*****************************

* Menu:

* Main Features::                     A high level overview.
* Sampling versus Tracing::           The pros and cons of sampling versus tracing.
* Steps Needed to Create a Profile::  How to create a profile.

Before we cover this tool in quite some detail, we start with a brief
overview of what it is, and the main features.  Since we know that many
of you would like to get started rightaway, already in this first
chapter we explain the basics of profiling with 'gprofng'.


File: gprofng.info,  Node: Main Features,  Next: Sampling versus Tracing,  Up: Overview

2.1 Main Features
=================

These are the main features of the gprofng tool:

   * Profiling is supported for an application written in C, C++, Java,
     or Scala.

   * Shared libraries are supported.  The information is presented at
     the instruction level.

   * The following multithreading programming models are supported:
     Pthreads, OpenMP, and Java threads.

   * This tool works with unmodified production level executables.
     There is no need to recompile the code, but if the '-g' option has
     been used when building the application, source line level
     information is available.

   * The focus is on support for code generated with the 'gcc' compiler,
     but there is some limited support for the 'icc' compiler as well.
     Future improvements and enhancements will focus on 'gcc' though.

   * Processors from Intel, AMD, and Arm are supported, but the level of
     support depends on the architectural details.  In particular,
     hardware event counters may not be supported.

   * Several views into the data are supported.  For example, a function
     overview where the time is spent, but also a source line,
     disassembly, call tree and a caller-callees overview are available.

   * Through filters, the user can zoom in on an area of interest.

   * Two or more profiles can be aggregated, or used in a comparison.
     This comparison can be obtained at the function, source line, and
     disassembly level.

   * Through a scripting language, and customization of the metrics
     shown, the generation and creation of a profile can be fully
     automated and provide tailored output.


File: gprofng.info,  Node: Sampling versus Tracing,  Next: Steps Needed to Create a Profile,  Prev: Main Features,  Up: Overview

2.2 Sampling versus Tracing
===========================

A key difference with some other profiling tools is that the main data
collection command 'gprofng collect app' mostly uses Program Counter
(PC) sampling under the hood.

   With _sampling_, the executable is stopped at regular intervals.
Each time it is halted, key information is gathered and stored.  This
includes the Program Counter that keeps track of where the execution is.
Hence the name.

   Together with operational data, this information is stored in the
experiment directory and can be viewed in the second phase.

   For example, the PC information is used to derive where the program
was when it was halted.  Since the sampling interval is known, it is
relatively easy to derive how much time was spent in the various parts
of the program.

   The opposite technique is generally referred to as _tracing_.  With
tracing, the target is instrumented with specific calls that collect the
requested information.

   These are some of the pros and cons of PC sampling verus tracing:

   * Since there is no need to recompile, existing executables can be
     used and the profile measures the behaviour of exactly the same
     executable that is used in production runs.

     With sampling, one inherently profiles a different executable
     because the calls to the instrumentation library may affect the
     compiler optimizations and run time behaviour.

   * With sampling, there are very few restrictions on what can be
     profiled and even without access to the source code, a basic
     profile can be made.

   * A downside of sampling is that, depending on the sampling
     frequency, small functions may be missed or not captured
     accurately.  Although this is rare, this may happen and is the
     reason why the user has control over the sampling rate.

   * While tracing produces precise information, sampling is statistical
     in nature.  As a result, small variations may occur across
     seemingly identical runs.  We have not observed more than a few
     percent deviation though.  Especially if the target job executed
     for a sufficiently long time.

   * With sampling, it is not possible to get an accurate count how
     often functions are called.


File: gprofng.info,  Node: Steps Needed to Create a Profile,  Prev: Sampling versus Tracing,  Up: Overview

2.3 Steps Needed to Create a Profile
====================================

Creating a profile takes two steps.  First the profile data needs to be
generated.  This is followed by a viewing step to create a report from
the information that has been gathered.

   Every gprofng command starts with 'gprofng', the name of the driver.
This is followed by a keyword to define the high level functionality.
Depending on this keyword, a third qualifier may be needed to further
narrow down the request.  This combination is then followed by options
that are specific to the functionality desired.

   The command to gather, or "collect", the performance data is called
'gprofng collect app'.  Aside from numerous options, this command takes
the name of the target executable as an input parameter.

   Upon completion of the run, the performance data can be found in the
newly created experiment directory.

   Unless explicitly specified otherwise, a default name for this
directory is chosen.  The name is 'test.<n>.er' where 'n' is the first
integer number not in use yet for such a name.

   For example, the first time 'gprofng collect app' is invoked, an
experiment directory with the name 'test.1.er' is created.

   Upon a subsequent invocation of 'gprofng collect app' in the same
directory, an experiment directory with the name 'test.2.er' will be
created, and so forth.

   Note that 'gprofng collect app' supports an option to explicitly name
the experiment directory.  Outside of the restriction that the name of
this directory has to end with '.er', any valid directory name can be
used for this.

   Now that we have the performance data, the next step is to display
it.

   The most commonly used command to view the performance information is
'gprofng display text'.  This is a very extensive and customizable tool
that produces the information in ASCII format.

   Another option is to use 'gprofng display html'.  This tool generates
a directory with files in html format.  These can be viewed in a
browser, allowing for easy navigation through the profile data.


File: gprofng.info,  Node: A Mini Tutorial,  Next: Terminology,  Prev: Overview,  Up: Top

3 A Mini Tutorial
*****************

In this chapter we present and discuss the main functionality of
'gprofng'.  This will be a practical approach, using an example code to
generate profile data and show how to get various performance reports.

* Menu:

* Getting Started::                 The basics of profiling with gprofng().
* Support for Multithreading::      Commands specific to multithreaded applications.
* Viewing Multiple Experiments::    Analyze multiple experiments.
* Profile Hardware Event Counters:: How to use hardware event counters.
* Java Profiling::                  How to profile a Java application.


File: gprofng.info,  Node: Getting Started,  Next: Support for Multithreading,  Up: A Mini Tutorial

3.1 Getting Started
===================

The information presented here provides a good and common basis for many
profiling tasks, but there are more features that you may want to
leverage.

   These are covered in subsequent sections in this chapter.

* Menu:

* The Example Program::                        A description of the example program used.
* A First Profile::                            How to get the first profile.
* The Source Code View::                       Display the metrics in the source code.
* The Disassembly View::                       Display the metrics at the instruction level.
* Display and Define the Metrics::             An example how to customize the metrics.
* A First Customization of the Output::        An example how to customize the output.
* Name the Experiment Directory::              Change the name of the experiment directory.
* Control the Number of Lines in the Output::  Change the number of lines in the tables.
* Sorting the Performance Data::               How to set the metric to sort by.
* Scripting::                                  Use a script to execute the commands.
* A More Elaborate Example::                   An example of customization.
* The Call Tree::                              Display the dynamic call tree.
* More Information on the Experiment::         How to get additional statistics.
* Control the Sampling Frequency::             How to control the sampling granularity.
* Information on Load Objects::                How to get more information on load objects.


File: gprofng.info,  Node: The Example Program,  Next: A First Profile,  Up: Getting Started

3.1.1 The Example Program
-------------------------

Throughout this guide we use the same example C code that implements the
multiplication of a vector of length n by an m by n matrix.  The result
is stored in a vector of length m.  The algorithm has been parallelized
using Posix Threads, or Pthreads for short.

   The code was built using the 'gcc' compiler and the name of the
executable is mxv-pthreads.exe.

   The matrix sizes can be set through the '-m' and '-n' options.  The
number of threads is set with the '-t' option.  To increase the duration
of the run, the multiplication is executed repeatedly.

   This is an example that multiplies a 3000 by 2000 matrix with a
vector of length 2000 using 2 threads:

     $ ./mxv-pthreads.exe -m 3000 -n 2000 -t 2
     mxv: error check passed - rows = 3000 columns = 2000 threads = 2
     $

   The program performs an internal check to verify the results are
correct.  The result of this check is printed, followed by the matrix
sizes and the number of threads used.


File: gprofng.info,  Node: A First Profile,  Next: The Source Code View,  Prev: The Example Program,  Up: Getting Started

3.1.2 A First Profile
---------------------

The first step is to collect the performance data.  It is important to
remember that much more information is gathered than may be shown by
default.  Often a single data collection run is sufficient to get a lot
of insight.

   The 'gprofng collect app' command is used for the data collection.
Nothing needs to be changed in the way the application is executed.  The
only difference is that it is now run under control of the tool, as
shown below:

     $ gprofng collect app ./mxv.pthreads.exe -m 3000 -n 2000 -t 1

   This command produces the following output:

     Creating experiment database test.1.er (Process ID: 2416504) ...
     mxv: error check passed - rows = 3000 columns = 2000 threads = 1

   We see the message that a directory with the name 'test.1.er' has
been created.  The application then completes as usual and we have our
first experiment directory that can be analyzed.

   The tool we use for this is called 'gprofng display text'.  It takes
the name of the experiment directory as an argument.

   If invoked this way, the tool starts in the interactive _interpreter_
mode.  While in this environment, commands can be given and the tool
responds.  This is illustrated below:

     $ gprofng display text test.1.er
     Warning: History and command editing is not supported on this system.
     (gp-display-text) quit
     $

   While useful in certain cases, we prefer to use this tool in command
line mode, by specifying the commands to be issued when invoking the
tool.  The way to do this is to prepend the command with a hyphen ('-')
if used on the command line.

   For example, with the 'functions' command we request a list of the
functions that have been executed and their respective CPU times:

     $ gprofng display text -functions test.1.er

     $ gprofng display text -functions test.1.er
     Functions sorted by metric: Exclusive Total CPU Time
     
     Excl.     Incl.      Name
     Total     Total
     CPU sec.  CPU sec.
     2.272     2.272      <Total>
     2.160     2.160      mxv_core
     0.047     0.103      init_data
     0.030     0.043      erand48_r
     0.013     0.013      __drand48_iterate
     0.013     0.056      drand48
     0.008     0.010      _int_malloc
     0.001     0.001      brk
     0.001     0.002      sysmalloc
     0.        0.001      __default_morecore
     0.        0.113      __libc_start_main
     0.        0.010      allocate_data
     0.        2.160      collector_root
     0.        2.160      driver_mxv
     0.        0.113      main
     0.        0.010      malloc
     0.        0.001      sbrk

   As easy and simple as these steps are, we do have a first profile of
our program!  There are three columns.  The first two contain the _Total
CPU Time_, which is the sum of the user and system time.  *Note
Inclusive and Exclusive Metrics:: for an explanation of "exclusive" and
"inclusive" times.

   The first line echoes the metric that is used to sort the output.  By
default, this is the exclusive CPU time, but the sort metric can be
changed by the user.

   We then see three columns with the exclusive and inclusive CPU times,
plus the name of the function.

   The function with the name '<Total>' is not a user function, but is
introduced by 'gprofng' and is used to display the accumulated metric
values.  In this case, we see that the total CPU time of this job was
'2.272' seconds.

   With '2.160' seconds, function 'mxv_core' is the most time consuming
function.  It is also a leaf function.

   The next function in the list is 'init_data'.  Although the CPU time
spent in this part is negligible, this is an interesting entry because
the inclusive CPU time of '0.103' seconds is higher than the exclusive
CPU time of '0.047' seconds.  Clearly it is calling another function, or
even more than one function.  *Note The Call Tree:: for the details how
to get more information on this.

   The function 'collector_root' does not look familiar.  It is one of
the internal functions used by 'gprofng collect app' and can be ignored.
While the inclusive time is high, the exclusive time is zero.  This
means it doesn't contribute to the performance.

   The question is how we know where this function originates from?
There is a very useful command to get more details on a function.  *Note
Information on Load Objects::.


File: gprofng.info,  Node: The Source Code View,  Next: The Disassembly View,  Prev: A First Profile,  Up: Getting Started

3.1.3 The Source Code View
--------------------------

In general, you would like to focus the tuning efforts on the most time
consuming part(s) of the program.  In this case that is easy, since
2.160 seconds on a total of 2.272 seconds is spent in function
'mxv_core'.  That is 95% of the total and it is time to dig deeper and
look at the time distribution at the source code level.

   The 'source' command is used to accomplish this.  It takes the name
of the function, not the source filename, as an argument.  This is
demonstrated below, where the 'gprofng display text' command is used to
show the annotated source listing of function 'mxv_core'.

   Please note that the source code has to be compiled with the '-g'
option in order for the source code feature to work.  Otherwise the
location can not be determined.

     $ gprofng display text -source mxv_core test.1.er

   The slightly modified output is as follows:

     Source file: <apath>/mxv.c
     Object file: mxv-pthreads.exe (found as test.1.er/archives/...)
     Load Object: mxv-pthreads.exe (found as test.1.er/archives/...)
     
        Excl.     Incl.
        Total     Total
        CPU sec.  CPU sec.
     
        <lines deleted>
                                    <Function: mxv_core>
        0.        0.             32. void __attribute__ ((noinline)) 
                                     mxv_core (
                                     uint64_t row_index_start, 
                                     uint64_t row_index_end,
                                     uint64_t m, uint64_t n, 
                                     double **restrict A,
                                     double *restrict b, 
                                     double *restrict c)
        0.        0.             33. {
        0.        0.             34.    for (uint64_t i=row_index_start; 
                                             i<=row_index_end; i++) {
        0.        0.             35.       double row_sum = 0.0;
     ## 1.687     1.687          36.       for (int64_t j=0; j<n; j++)
        0.473     0.473          37.          row_sum += A[i][j]*b[j];
        0.        0.             38.       c[i] = row_sum;
                                 39.    }
        0.        0.             40. }

   The first three lines provide information on the location of the
source file, the object file and the load object (*Note Load Objects and
Functions::).

   Function 'mxv_core' is part of a source file that has other functions
as well.  These functions will be shown, but without timing information.
They have been removed in the output shown above.

   This is followed by the annotated source code listing.  The selected
metrics are shown first, followed by a source line number, and the
source code.  The most time consuming line(s) are marked with the '##'
symbol.  In this way they are easier to find.

   What we see is that all of the time is spent in lines 36-37.

   A related command sometimes comes handy as well.  It is called
'lines' and displays a list of the source lines and their metrics,
ordered according to the current sort metric (*Note Sorting the
Performance Data::).

   Below the command and the output.  For lay-out reasons, only the top
10 is shown here and the last part of the text on some lines has been
replaced by dots.

     $ gprofng display text -lines test.1.er

     Lines sorted by metric: Exclusive Total CPU Time
     
     Excl.     Incl.  Name
     Total     Total
     CPU sec.  CPU sec.
     2.272     2.272  <Total>
     1.687     1.687  mxv_core, line 36 in "mxv.c"
     0.473     0.473  mxv_core, line 37 in "mxv.c"
     0.032     0.088  init_data, line 72 in "manage_data.c"
     0.030     0.043  <Function: erand48_r, instructions without line numbers>
     0.013     0.013  <Function: __drand48_iterate, instructions without ...>
     0.013     0.056  <Function: drand48, instructions without line numbers>
     0.012     0.012  init_data, line 77 in "manage_data.c"
     0.008     0.010  <Function: _int_malloc, instructions without ...>
     0.003     0.003  init_data, line 71 in "manage_data.c"

   What this overview immediately highlights is that the next most time
consuming source line takes 0.032 seconds only.  With an inclusive time
of 0.088 seconds, it is also clear that this branch of the code does not
impact the performance.


File: gprofng.info,  Node: The Disassembly View,  Next: Display and Define the Metrics,  Prev: The Source Code View,  Up: Getting Started

3.1.4 The Disassembly View
--------------------------

The source view is very useful to obtain more insight where the time is
spent, but sometimes this is not sufficient.  This is when the
disassembly view comes in.  It is activated with the 'disasm' command
and as with the source view, it displays an annotated listing.  In this
case it shows the instructions with the metrics, interleaved with the
source lines.  The instructions have a reference in square brackets ('['
and ']') to the source line they correspond to.

This is what we get for our example:

     $ gprofng display text -disasm mxv_core test.1.er

     Source file: <apath>/mxv.c
     Object file: mxv-pthreads.exe (found as test.1.er/archives/...)
     Load Object: mxv-pthreads.exe (found as test.1.er/archives/...)
     
        Excl.     Incl.
        Total     Total
        CPU sec.  CPU sec.
     
        <lines deleted>
                             32. void __attribute__ ((noinline)) 
                                 mxv_core (
                                 uint64_t row_index_start, 
                                 uint64_t row_index_end,
                                 uint64_t m, uint64_t n, 
                                 double **restrict A,
                                 double *restrict b, 
                                 double *restrict c)
                             33. {
                                 <Function: mxv_core>
        0.        0.             [33]   4021ba:  mov    0x8(%rsp),%r10
                             34.    for (uint64_t i=row_index_start;
                                         i<=row_index_end; i++) {
        0.        0.             [34]   4021bf:  cmp    %rsi,%rdi
        0.        0.             [34]   4021c2:  jbe    0x37
        0.        0.             [34]   4021c4:  ret
                             35.        double row_sum = 0.0;
                             36.        for (int64_t j=0; j<n; j++)
                             37.           row_sum += A[i][j]*b[j];
        0.        0.             [37]   4021c5:  mov    (%r8,%rdi,8),%rdx
        0.        0.             [36]   4021c9:  mov    $0x0,%eax
        0.        0.             [35]   4021ce:  pxor   %xmm1,%xmm1
        0.002     0.002          [37]   4021d2:  movsd  (%rdx,%rax,8),%xmm0
        0.096     0.096          [37]   4021d7:  mulsd  (%r9,%rax,8),%xmm0
        0.375     0.375          [37]   4021dd:  addsd  %xmm0,%xmm1
     ## 1.683     1.683          [36]   4021e1:  add    $0x1,%rax
        0.004     0.004          [36]   4021e5:  cmp    %rax,%rcx
        0.        0.             [36]   4021e8:  jne    0xffffffffffffffea
                             38.        c[i] = row_sum;
        0.        0.             [38]   4021ea:  movsd  %xmm1,(%r10,%rdi,8)
        0.        0.             [34]   4021f0:  add    $0x1,%rdi
        0.        0.             [34]   4021f4:  cmp    %rdi,%rsi
        0.        0.             [34]   4021f7:  jb     0xd
        0.        0.             [35]   4021f9:  pxor   %xmm1,%xmm1
        0.        0.             [36]   4021fd:  test   %rcx,%rcx
        0.        0.             [36]   402200:  jne    0xffffffffffffffc5
        0.        0.             [36]   402202:  jmp    0xffffffffffffffe8
                             39.    }
                             40. }
        0.        0.             [40]   402204:  ret

   For each instruction, the timing values are given and we can exactly
which ones are the most expensive.  As with the source level view, the
most expensive instructions are market with the '##' symbol.

   As illustrated below and similar to the 'lines' command, we can get
an overview of the instructions executed by using the 'pcs' command.

Below the command and the output, which again has been restricted to 10
lines:

     $ gprofng display text -pcs test.1.er

     PCs sorted by metric: Exclusive Total CPU Time
     
     Excl.     Incl.      Name
     Total     Total
     CPU sec.  CPU sec.
     2.272     2.272  <Total>
     1.683     1.683  mxv_core + 0x00000027, line 36 in "mxv.c"
     0.375     0.375  mxv_core + 0x00000023, line 37 in "mxv.c"
     0.096     0.096  mxv_core + 0x0000001D, line 37 in "mxv.c"
     0.027     0.027  init_data + 0x000000BD, line 72 in "manage_data.c"
     0.012     0.012  init_data + 0x00000117, line 77 in "manage_data.c"
     0.008     0.008  _int_malloc + 0x00000A45
     0.007     0.007  erand48_r + 0x00000062
     0.006     0.006  drand48 + 0x00000000
     0.005     0.005  __drand48_iterate + 0x00000005


File: gprofng.info,  Node: Display and Define the Metrics,  Next: A First Customization of the Output,  Prev: The Disassembly View,  Up: Getting Started

3.1.5 Display and Define the Metrics
------------------------------------

The default metrics shown by 'gprofng display text' are useful, but
there is more recorded than displayed.  We can customize the values
shown by defining the metrics ourselves.

   There are two commands related to changing the metrics shown:
'metric_list' and 'metrics'.

   The first command shows the metrics in use, plus all the metrics that
have been stored as part of the experiment.  The second command may be
used to define the metric list.

   In our example we get the following values for the metrics:

     $ gprofng display text -metric_list test.1.er

     Current metrics: e.totalcpu:i.totalcpu:name
     Current Sort Metric: Exclusive Total CPU Time ( e.totalcpu )
     Available metrics:
        Exclusive Total CPU Time: e.%totalcpu
        Inclusive Total CPU Time: i.%totalcpu
                            Size: size
                      PC Address: address
                            Name: name

   This shows the metrics currently in use, the metric that is used to
sort the data and all the metrics that have been recorded, but are not
necessarily shown.

   In this case, the default metrics are set to the exclusive and
inclusive total CPU times, plus the name of the function, or load
object.

   The 'metrics' command is used to define the metrics that need to be
displayed.

   For example, to display the exclusive total CPU time, both as a
number and a percentage, use the following metric definition:
'e.%totalcpu'

   Since the metrics can be tailored for different views, there is a way
to reset them to the default.  This is done through the special keyword
'default'.


File: gprofng.info,  Node: A First Customization of the Output,  Next: Name the Experiment Directory,  Prev: Display and Define the Metrics,  Up: Getting Started

3.1.6 A First Customization of the Output
-----------------------------------------

With the information just given, we can customize the function overview.
For sake of the example, we would like to display the name of the
function first, followed by the exclusive CPU time, given as an absolute
number and a percentage.

   Note that the commands are parsed in order of appearance.  This is
why we need to define the metrics _before_ requesting the function
overview:

     $ gprofng display text -metrics name:e.%totalcpu -functions test.1.er

     Current metrics: name:e.%totalcpu
     Current Sort Metric: Exclusive Total CPU Time ( e.%totalcpu )
     Functions sorted by metric: Exclusive Total CPU Time
     
     Name                Excl. Total
                         CPU
                          sec.      %
      <Total>            2.272 100.00
      mxv_core           2.160  95.04
      init_data          0.047   2.06
      erand48_r          0.030   1.32
      __drand48_iterate  0.013   0.57
      drand48            0.013   0.57
      _int_malloc        0.008   0.35
      brk                0.001   0.04
      sysmalloc          0.001   0.04
      __default_morecore 0.      0.
      __libc_start_main  0.      0.
      allocate_data      0.      0.
      collector_root     0.      0.
      driver_mxv         0.      0.
      main               0.      0.
      malloc             0.      0.
      sbrk               0.      0.

   This was a first and simple example how to customize the output.
Note that we did not rerun our profiling job and merely modified the
display settings.  Below we will show other and also more advanced
examples of customization.


File: gprofng.info,  Node: Name the Experiment Directory,  Next: Control the Number of Lines in the Output,  Prev: A First Customization of the Output,  Up: Getting Started

3.1.7 Name the Experiment Directory
-----------------------------------

When using 'gprofng collect app', the default names for experiments work
fine, but they are quite generic.  It is often more convenient to select
a more descriptive name.  For example, one that reflects conditions for
the experiment conducted.

   For this, the mutually exclusive '-o' and '-O' options come in handy.
Both may be used to provide a name for the experiment directory, but the
behaviour of 'gprofng collect app' is different.

   With the '-o' option, an existing experiment directory is not
overwritten.  You either need to explicitly remove an existing directory
first, or use a name that is not in use yet.

   This is in contrast with the behaviour for the '-O' option.  Any
existing (experiment) directory with the same name is silently
overwritten.

   Be aware that the name of the experiment directory has to end with
'.er'.


File: gprofng.info,  Node: Control the Number of Lines in the Output,  Next: Sorting the Performance Data,  Prev: Name the Experiment Directory,  Up: Getting Started

3.1.8 Control the Number of Lines in the Output
-----------------------------------------------

The 'limit <n>' command can be used to control the number of lines
printed in various overviews, including the function view, but it also
takes effect for other display commands, like 'lines'.

   The argument '<n>' should be a positive integer number.  It sets the
number of lines in the function view.  A value of zero resets the limit
to the default.

   Be aware that the pseudo-function '<Total>' counts as a regular
function.  For example 'limit 10' displays nine user level functions.


File: gprofng.info,  Node: Sorting the Performance Data,  Next: Scripting,  Prev: Control the Number of Lines in the Output,  Up: Getting Started

3.1.9 Sorting the Performance Data
----------------------------------

The 'sort <key>' command sets the key to be used when sorting the
performance data.

   The key is a valid metric definition, but the visibility field (*Note
Metric Definitions::) in the metric definition is ignored since this
does not affect the outcome of the sorting operation.  For example if we
set the sort key to 'e.totalcpu', the values will be sorted in
descending order with respect to the exclusive total CPU time.

   The data can be sorted in reverse order by prepending the metric
definition with a minus ('-') sign.  For example 'sort -e.totalcpu'.

   A default metric for the sort operation has been defined and since
this is a persistent command, this default can be restored with
'default' as the key.


File: gprofng.info,  Node: Scripting,  Next: A More Elaborate Example,  Prev: Sorting the Performance Data,  Up: Getting Started

3.1.10 Scripting
----------------

As is probably clear by now, the list with commands for 'gprofng display
text' can be very long.  This is tedious and also error prone.  Luckily,
there is an easier and more elegant way to control the behaviour of this
tool.

   Through the 'script' command, the name of a file with commands can be
passed in.  These commands are parsed and executed as if they appeared
on the command line in the same order as encountered in the file.  The
commands in this script file can actually be mixed with commands on the
command line.

   The difference between the commands in the script file and those used
on the command line is that the latter require a leading dash ('-')
symbol.

   Comment lines are supported.  They need to start with the '#' symbol.


File: gprofng.info,  Node: A More Elaborate Example,  Next: The Call Tree,  Prev: Scripting,  Up: Getting Started

3.1.11 A More Elaborate Example
-------------------------------

With the information presented so far, we can customize our data
gathering and display commands.

   As an example, to reflect the name of the algorithm and the number of
threads that were used in the experiment, we select 'mxv.1.thr.er' as
the name of the experiment directory.  All we then need to do is to add
the '-O' option followed by this name on the command line when running
'gprofng collect app':

     $ exe=mxv-pthreads.exe
     $ m=3000
     $ n=2000
     $ gprofng collect app -O mxv.1.thr.er ./$exe -m $m -n $n -t 1

   The commands to generate the profile are put into a file that we
simply call 'my-script':

     $ cat my-script
     # This is my first gprofng script
     # Set the metrics
     metrics i.%totalcpu:e.%totalcpu:name
     # Use the exclusive time to sort
     sort e.totalcpu
     # Limit the function list to 5 lines
     limit 5
     # Show the function list
     functions

   This script file is then specified as input to the 'gprofng display
text' command that is used to display the performance information stored
in 'mxv.1.thr.er':

     $ gprofng display text -script my-script mxv.1.thr.er

   The command above produces the following output:

     # This is my first gprofng script
     # Set the metrics
     Current metrics: i.%totalcpu:e.%totalcpu:name
     Current Sort Metric: Exclusive Total CPU Time ( e.%totalcpu )
     # Use the exclusive time to sort
     Current Sort Metric: Exclusive Total CPU Time ( e.%totalcpu )
     # Limit the function list to 5 lines
     Print limit set to 5
     # Show the function list
     Functions sorted by metric: Exclusive Total CPU Time
     
     Incl. Total   Excl. Total    Name
     CPU           CPU
      sec.      %   sec.      %
     2.272 100.00  2.272 100.00   <Total>
     2.159  95.00  2.159  95.00   mxv_core
     0.102   4.48  0.054   2.37   init_data
     0.035   1.54  0.025   1.10   erand48_r
     0.048   2.11  0.013   0.57   drand48

   In the first part of the output, our comment lines in the script file
are shown.  These are interleaved with an acknowledgement message for
the commands.

   This is followed by a profile consisting of 5 lines only.  For both
metrics, the percentages plus the timings are given.  The numbers are
sorted with respect to the exclusive total CPU time.

   It is now immediately clear that function 'mxv_core' is responsbile
for 95% of the CPU time and 'init_data' takes 4.5% only.

   This is also where we see sampling in action.  Although this is
exactly the same job we profiled before, the timings are somewhat
different, but the differences are very small.


File: gprofng.info,  Node: The Call Tree,  Next: More Information on the Experiment,  Prev: A More Elaborate Example,  Up: Getting Started

3.1.12 The Call Tree
--------------------

The call tree shows the dynamic hierarchy of the application by
displaying the functions executed and their parent.  It helps to find
the most expensive path in the program.

   This feature is enabled through the 'calltree' command.  This is how
to get this tree for our current experiment:

     $ gprofng display text -calltree mxv.1.thr.er

   This displays the following structure:

     Functions Call Tree. Metric: Attributed Total CPU Time
     
     Attr.      Name
     Total
     CPU sec.
     2.272      +-<Total>
     2.159        +-collector_root
     2.159        |  +-driver_mxv
     2.159        |    +-mxv_core
     0.114        +-__libc_start_main
     0.114          +-main
     0.102            +-init_data
     0.048            |  +-drand48
     0.035            |    +-erand48_r
     0.010            |      +-__drand48_iterate
     0.011            +-allocate_data
     0.011            |  +-malloc
     0.011            |    +-_int_malloc
     0.001            |      +-sysmalloc
     0.001            +-check_results
     0.001              +-malloc
     0.001                +-_int_malloc

   At first sight this may not be what you expected and some explanation
is in place.

   First of all, function 'collector_root' is internal to 'gprofng' and
should be hidden to the user.  This is part of a planned future
enhancement.

   Recall that the 'objects' and 'fsingle' commands are very useful to
find out more about load objects in general, but also to help identify
an unknown entry in the function overview.  *Note Load Objects and
Functions::.

   Another thing to note is that there are two main branches.  The one
under 'collector_root' and the second one under '__libc_start_main'.
This reflects the fact that we are executing a parallel program.  Even
though we only used one thread for this run, this is still executed in a
separate path.

   The main, sequential part of the program is displayed under 'main'
and shows the functions called and the time they took.

   There are two things worth noting for the call tree feature:

   * This is a dynamic tree and since sampling is used, it most likely
     looks slighlty different across seemingly identical profile runs.
     In case the run times are short, it is worth considering to use a
     high resolution through the '-p' option.  For example to use '-p
     hi' to increase the sampling rate.

   * In case hardware event counters have been enabled (*Note Profile
     Hardware Event Counters::), these values are also displayed in the
     call tree view.


File: gprofng.info,  Node: More Information on the Experiment,  Next: Control the Sampling Frequency,  Prev: The Call Tree,  Up: Getting Started

3.1.13 More Information on the Experiment
-----------------------------------------

The experiment directory not only contains performance related data.
Several system characteristics, the actually command executed, and some
global performance statistics can be displayed.

   The 'header' command displays information about the experiment(s).
For example, this is the command to extract this data from for our
experiment directory:

     $ gprofng display text -header mxv.1.thr.er

   The above command prints the following information.  Note that some
of the lay-out and the information has been modified.  The textual
changes are marked with the '<' and '>' symbols.

     Experiment: mxv.1.thr.er
     No errors
     No warnings
     Archive command `gp-archive -n -a on 
              --outfile <exp_dir>/archive.log <exp_dir>'
     
     Target command (64-bit): './mxv-pthreads.exe -m 3000 -n 2000 -t 1'
     Process pid 30591, ppid 30589, pgrp 30551, sid 30468
     Current working directory: <cwd>
     Collector version: `2.36.50'; experiment version 12.4 (64-bit)
     Host `<hostname>', OS `Linux <version>', page size 4096, 
          architecture `x86_64'
       16 CPUs, clock speed 1995 MHz.
       Memory: 30871514 pages @  4096 = 120591 MB.
     Data collection parameters:
       Clock-profiling, interval = 997 microsecs.
       Periodic sampling, 1 secs.
       Follow descendant processes from: fork|exec|combo
     
     Experiment started <date and time>
     
     Experiment Ended: 2.293162658
     Data Collection Duration: 2.293162658

   The output above may assist in troubleshooting, or to verify some of
the operational conditions and we recommand to include this command when
generating a profile.

   Related to this command there is a useful option to record your own
comment(s) in an experiment.  To this end, use the '-C' option on the
'gprofng collect app' tool to specify a comment string.  Up to ten
comment lines can be included.  These comments are displayed with the
'header' command on the 'gprofng display text' tool.

   The 'overview' command displays information on the experiment(s) and
also shows a summary of the values for the metric(s) used.  This is an
example how to use it on our newly created experiment directory:

     $ gprofng display text -overview mxv.1.thr.er

     Experiment(s):
     
     Experiment      :mxv.1.thr.er
       Target        : './mxv-pthreads.exe -m 3000 -n 2000 -t 1'
       Host          : <hostname> (<ISA>, Linux <version>)
       Start Time    : <date and time>
       Duration      : 2.293 Seconds
     
     Metrics:
     
       Experiment Duration (Seconds): [2.293]
       Clock Profiling
         [X]Total CPU Time - totalcpu (Seconds): [*2.272]
     
     Notes: '*' indicates hot metrics, '[X]' indicates currently enabled 
            metrics.
            The metrics command can be used to change selections. The 
            metric_list command lists all available metrics.

   This command provides a dashboard overview that helps to easily
identify where the time is spent and in case hardware event counters are
used, it shows their total values.


File: gprofng.info,  Node: Control the Sampling Frequency,  Next: Information on Load Objects,  Prev: More Information on the Experiment,  Up: Getting Started

3.1.14 Control the Sampling Frequency
-------------------------------------

So far we did not talk about the frequency of the sampling process, but
in some cases it is useful to change the default of 10 milliseconds.

   The advantage of increasing the sampling frequency is that functions
that do not take much time per invocation are more accurately captured.
The downside is that more data is gathered.  This has an impact on the
overhead of the collection process and more disk space is required.

   In general this is not an immediate concern, but with heavily
threaded applications that run for an extended period of time,
increasing the frequency may have a more noticeable impact.

   The '-p' option on the 'gprofng collect app' tool is used to enable
or disable clock based profiling, or to explicitly set the sampling
rate.  This option takes one of the following keywords:

'off'
     Disable clock based profiling.

'on'
     Enable clock based profiling with a per thread sampling interval of
     10 ms.  This is the default.

'lo'
     Enable clock based profiling with a per thread sampling interval of
     100 ms.

'hi'
     Enable clock based profiling with a per thread sampling interval of
     1 ms.

'<value>'
     Enable clock based profiling with a per thread sampling interval of
     <value>.

   One may wonder why there is an option to disable clock based
profiling.  This is because by default, it is enabled when conducting
hardware event counter experiments (*Note Profile Hardware Event
Counters::).  With the '-p off' option, this can be disabled.

   If an explicit value is set for the sampling, the number can be an
integer or a floating-point number.  A suffix of 'u' for microseconds,
or 'm' for milliseconds is supported.  If no suffix is used, the value
is assumed to be in milliseconds.

   If the value is smaller than the clock profiling minimum, a warning
message is issued and it is set to the minimum.  In case it is not a
multiple of the clock profiling resolution, it is silently rounded down
to the nearest multiple of the clock resolution.

   If the value exceeds the clock profiling maximum, is negative, or
zero, an error is reported.

   Note that the 'header' command echoes the sampling rate used.


File: gprofng.info,  Node: Information on Load Objects,  Prev: Control the Sampling Frequency,  Up: Getting Started

3.1.15 Information on Load Objects
----------------------------------

It may happen that the function list contains a function that is not
known to the user.  This can easily happen with library functions for
example.  Luckily there are three commands that come in handy then.

   These commands are 'objects', 'fsingle', and 'fsummary'.  They
provide details on load objects (*Note Load Objects and Functions::).

   The 'objects' command lists all load objects that have been
referenced during the performance experiment.  Below we show the command
and the result for our profile job.  Like before, the (long) path names
in the output have been shortened and replaced by the '<apath>' symbol
that represents an absolute directory path.

     $ gprofng display text -objects mxv.1.thr.er

   The output includes the name and path of the target executable:

      <Unknown> (<Unknown>)
      <mxv-pthreads.exe> (<apath>/mxv-pthreads.exe)
      <librt-2.17.so> (/usr/lib64/librt-2.17.so)
      <libdl-2.17.so> (/usr/lib64/libdl-2.17.so)
      <libbfd-2.36.50.20210505.so> (<apath>/libbfd-2.36.50 <etc>)
      <libopcodes-2.36.50.20210505.so> (<apath>/libopcodes-2. <etc>)
      <libc-2.17.so> (/usr/lib64/libc-2.17.so)
      <libpthread-2.17.so> (/usr/lib64/libpthread-2.17.so)
      <libm-2.17.so> (/usr/lib64/libm-2.17.so)
      <libgp-collector.so> (<apath>/libgp-collector.so)
      <ld-2.17.so> (/usr/lib64/ld-2.17.so)
      <DYNAMIC_FUNCTIONS> (DYNAMIC_FUNCTIONS)

   The 'fsingle' command may be used to get more details on a specific
entry in the function view, say.  For example, the command below
provides additional information on the 'collector_root' function shown
in the function overview.

     $ gprofng display text -fsingle collector_root mxv.1.thr.er

   Below the output from this command.  It has been somewhat modified to
match the display requirements.

     collector_root
       Exclusive Total CPU Time: 0.    (  0. %)
       Inclusive Total CPU Time: 2.159 ( 95.0%)
                 Size:   401
           PC Address: 10:0x0001db60
          Source File: <apath>/dispatcher.c
          Object File: mxv.1.thr.er/archives/libgp-collector.so_HpzZ6wMR-3b
          Load Object: <apath>/libgp-collector.so
         Mangled Name:
              Aliases:

   In this table we not only see how much time was spent in this
function, we also see where it originates from.  In addition to this,
the size and start address are given as well.  If the source code
location is known it is also shown here.

   The related 'fsummary' command displays the same information as
'fsingle', but for all functions in the function overview, including
'<Total>':

     $ gprofng display text -fsummary mxv.1.thr.er

     Functions sorted by metric: Exclusive Total CPU Time
     
     <Total>
       Exclusive Total CPU Time: 2.272 (100.0%)
       Inclusive Total CPU Time: 2.272 (100.0%)
                 Size:     0
           PC Address: 1:0x00000000
          Source File: (unknown)
          Object File: (unknown)
          Load Object: <Total>
         Mangled Name:
              Aliases:
     
     mxv_core
       Exclusive Total CPU Time: 2.159 ( 95.0%)
       Inclusive Total CPU Time: 2.159 ( 95.0%)
                 Size:    75
           PC Address: 2:0x000021ba
          Source File: <apath>/mxv.c
          Object File: mxv.1.thr.er/archives/mxv-pthreads.exe_hRxWdccbJPc
          Load Object: <apath>/mxv-pthreads.exe
         Mangled Name:
              Aliases:
     
               ... etc ...


File: gprofng.info,  Node: Support for Multithreading,  Next: Viewing Multiple Experiments,  Prev: Getting Started,  Up: A Mini Tutorial

3.2 Support for Multithreading
==============================

In this chapter we introduce and discuss the support for multithreading.
As is shown below, nothing needs to be changed when collecting the
performance data.

   The difference is that additional commands are available to get more
information on the parallel environment, plus that several filters allow
the user to zoom in on specific threads.

* Menu:

* Creating a Multithreading Experiment::
* Commands Specific to Multithreading::


File: gprofng.info,  Node: Creating a Multithreading Experiment,  Next: Commands Specific to Multithreading,  Up: Support for Multithreading

3.2.1 Creating a Multithreading Experiment
------------------------------------------

We demonstrate the support for multithreading using the same code and
settings as before, but this time we use 2 threads:

     $ exe=mxv-pthreads.exe
     $ m=3000
     $ n=2000
     $ gprofng collect app -O mxv.2.thr.er ./$exe -m $m -n $n -t 2

   First of all, note that we did not change anything, other than
setting the number of threads to 2.  Nothing special is needed to
profile a multithreaded job when using 'gprofng'.

   The same is true when displaying the performance results.  The same
commands that we used before work unmodified.  For example, this is all
that is needed to get a function overview:

     $ gpprofng display text -limit 10 -functions mxv.2.thr.er

   This produces the following familiar looking output:

     Print limit set to 10
     Functions sorted by metric: Exclusive Total CPU Time
     
     Excl.     Incl.      Name
     Total     Total
     CPU sec.  CPU sec.
     2.268     2.268      <Total>
     2.155     2.155      mxv_core
     0.044     0.103      init_data
     0.030     0.046      erand48_r
     0.016     0.016      __drand48_iterate
     0.013     0.059      drand48
     0.008     0.011      _int_malloc
     0.003     0.003      brk
     0.        0.003      __default_morecore
     0.        0.114      __libc_start_main


File: gprofng.info,  Node: Commands Specific to Multithreading,  Prev: Creating a Multithreading Experiment,  Up: Support for Multithreading

3.2.2 Commands Specific to Multithreading
-----------------------------------------

The function overview shown above shows the results aggregated over all
the threads.  The interesting new element is that we can also look at
the performance data for the individual threads.

   The 'thread_list' command displays how many threads have been used:

     $ gprofng display text -thread_list mxv.2.thr.er

   This produces the following output, showing that three threads have
been used:

     Exp Sel Total
     === === =====
       1 all     3

   The output confirms there is one experiment and that by default all
threads are selected.

   It may seem surprising to see three threads here, since we used the
'-t 2' option, but it is common for a Pthreads program to use one
additional thread.  This is typically the thread that runs from start to
finish and handles the sequential portions of the code, as well as takes
care of managing the threads.

   It is no different in our example code.  At some point, the main
thread creates and activates the two threads that perform the
multiplication of the matrix with the vector.  Upon completion of this
computation, the main thread continues.

   The 'threads' command is simple, yet very powerful.  It shows the
total value of the metrics for each thread.  To make it easier to
interpret the data, we modify the metrics to include percentages:

     $ gprofng display text -metrics e.%totalcpu -threads mxv.2.thr.er

   The command above produces the following overview:

     Current metrics: e.%totalcpu:name
     Current Sort Metric: Exclusive Total CPU Time ( e.%totalcpu )
     Objects sorted by metric: Exclusive Total CPU Time
     
     Excl. Total    Name
     CPU
      sec.      %
     2.258 100.00   <Total>
     1.075  47.59   Process 1, Thread 3
     1.070  47.37   Process 1, Thread 2
     0.114   5.03   Process 1, Thread 1

   The first line gives the total CPU time accumulated over the threads
selected.  This is followed by the metric value(s) for each thread.

   From this it is clear that the main thread is responsible for 5% of
the total CPU time, while the other two threads take 47% each.

   This view is ideally suited to verify if there any load balancing
issues and also to find the most time consuming thread(s).

   While useful, often more information than this is needed.  This is
where the thread selection filter comes in.  Through the 'thread_select'
command, one or more threads may be selected (*Note The Selection List::
how to define the selection list).

   Since it is most common to use this command in a script, we do so as
well here.  Below the script we are using:

     # Define the metrics
     metrics e.%totalcpu
     # Limit the output to 10 lines
     limit 10
     # Get the function overview for thread 1
     thread_select 1
     functions
     # Get the function overview for thread 2
     thread_select 2
     functions
     # Get the function overview for thread 3
     thread_select 3
     functions

   The definition of the metrics and the output limiter has been shown
and explained before and will be ignored.  The new command we focus on
is 'thread_select'.

   This command takes a list (*Note The Selection List::) to select
specific threads.  In this case we simply use the individual thread
numbers that we obtained with the 'thread_list' command earlier.

   This restricts the output of the 'functions' command to the thread
number(s) specified.  This means that the script above shows which
function(s) each thread executes and how much CPU time they consumed.
Both the timings and their percentages are given.

   This is the relevant part of the output for the first thread:

     # Get the function overview for thread 1
     Exp Sel Total
     === === =====
       1 1       3
     Functions sorted by metric: Exclusive Total CPU Time
     
     Excl. Total    Name
     CPU
      sec.      %
     0.114 100.00   <Total>
     0.051  44.74   init_data
     0.028  24.56   erand48_r
     0.017  14.91   __drand48_iterate
     0.010   8.77   _int_malloc
     0.008   7.02   drand48
     0.      0.     __libc_start_main
     0.      0.     allocate_data
     0.      0.     main
     0.      0.     malloc

   As usual, the comment lines are echoed.  This is followed by a
confirmation of our selection.  We see that indeed thread 1 has been
selected.  What is displayed next is the function overview for this
particular thread.  Due to the 'limit 10' command, there are ten entries
in this list.

   Below are the overviews for threads 2 and 3 respectively.  We see
that all of the CPU time is spent in function 'mxv_core' and that this
time is approximately the same for both threads.

     # Get the function overview for thread 2
     Exp Sel Total
     === === =====
       1 2       3
     Functions sorted by metric: Exclusive Total CPU Time
     
     Excl. Total    Name
     CPU
      sec.      %
     1.072 100.00   <Total>
     1.072 100.00   mxv_core
     0.      0.     collector_root
     0.      0.     driver_mxv
     
     # Get the function overview for thread 3
     Exp Sel Total
     === === =====
       1 3       3
     Functions sorted by metric: Exclusive Total CPU Time
     
     Excl. Total    Name
     CPU
      sec.      %
     1.076 100.00   <Total>
     1.076 100.00   mxv_core
     0.      0.     collector_root
     0.      0.     driver_mxv

   When analyzing the performance of a multithreaded application, it is
sometimes useful to know whether threads have mostly executed on the
same core, say, or if they have wandered across multiple cores.  This
sort of stickiness is usually referred to as _thread affinity_.

   Similar to the commands for the threads, there are several commands
related to the usage of the cores, or _CPUs_ as they are called in
'gprofng' (*Note The Concept of a CPU in gprofng::).

   In order to have some more interesting data to look at, we created a
new experiment, this time using 8 threads:

     $ exe=mxv-pthreads.exe
     $ m=3000
     $ n=2000
     $ gprofng collect app -O mxv.8.thr.er ./$exe -m $m -n $n -t 8

   Similar to the 'thread_list' command, the 'cpu_list' command displays
how many CPUs have been used.  The equivalent of the 'threads' threads
command, is the 'cpus' command, which shows the CPU numbers that were
used and how much time was spent on each of them.  Both are demonstrated
below.

     $ gprofng display text -metrics e.%totalcpu -cpu_list -cpus mxv.8.thr.er

   This command produces the following output:

     Current metrics: e.%totalcpu:name
     Current Sort Metric: Exclusive Total CPU Time ( e.%totalcpu )
     Exp Sel Total
     === === =====
       1 all    10
     Objects sorted by metric: Exclusive Total CPU Time
     
     Excl. Total    Name
     CPU
      sec.      %
     2.310 100.00   <Total>
     0.286  12.39   CPU 7
     0.284  12.30   CPU 13
     0.282  12.21   CPU 5
     0.280  12.13   CPU 14
     0.266  11.52   CPU 9
     0.265  11.48   CPU 2
     0.264  11.44   CPU 11
     0.194   8.42   CPU 0
     0.114   4.92   CPU 1
     0.074   3.19   CPU 15

   What we see in this table is that a total of 10 CPUs have been used.
This is followed by a list with all the CPU numbers that have been used
during the run.  For each CPU it is shown how much time was spent on it.

   While the table with thread times shown earlier may point at a load
imbalance in the application, this overview has a different purpose.

   For example, we see that 10 CPUs have been used, but we know that the
application uses 9 threads only.  This means that at least one thread
has executed on more than one CPU. In itself this is not something to
worry about, but warrants a deeper investigation.

   Honesty dictates that next we performed a pre-analysis to find out
which thread(s) have been running on more than one CPU. We found this to
be thread 7.  It has executed on CPUs 0 and 15.

   With this knowledge, we wrote the script shown below.  It zooms in on
the behaviour of thread 7.

     # Define the metrics
     metrics e.%totalcpu
     # Limit the output to 10 lines
     limit 10
     functions
     # Get the function overview for CPU 0
     cpu_select 0
     functions
     # Get the function overview for CPU 15
     cpu_select 15
     functions

   From the earlier shown threads overview, we know that thread 7 has
used '0.268' seconds of CPU time..

   By selecting CPUs 0 and 15, respectively, we get the following
function overviews:

     # Get the function overview for CPU 0
     Exp Sel Total
     === === =====
       1 0      10
     Functions sorted by metric: Exclusive Total CPU Time
     
     Excl. Total    Name
     CPU
      sec.      %
     0.194 100.00   <Total>
     0.194 100.00   mxv_core
     0.      0.     collector_root
     0.      0.     driver_mxv
     
     # Get the function overview for CPU 15
     Exp Sel Total
     === === =====
       1 15     10
     Functions sorted by metric: Exclusive Total CPU Time
     
     Excl. Total    Name
     CPU
      sec.      %
     0.074 100.00   <Total>
     0.074 100.00   mxv_core
     0.      0.     collector_root
     0.      0.     driver_mxv

   This shows that thread 7 spent '0.194' seconds on CPU 0 and '0.074'
seconds on CPU 15.


File: gprofng.info,  Node: Viewing Multiple Experiments,  Next: Profile Hardware Event Counters,  Prev: Support for Multithreading,  Up: A Mini Tutorial

3.3 Viewing Multiple Experiments
================================

One thing we did not cover sofar is that 'gprofng' fully supports the
analysis of multiple experiments.  The 'gprofng display text' tool
accepts a list of experiments.  The data can either be aggregated across
the experiments, or used in a comparison.

   Mention 'experiment_list'

* Menu:

* Aggregation of Experiments::
* Comparison of Experiments::


File: gprofng.info,  Node: Aggregation of Experiments,  Next: Comparison of Experiments,  Up: Viewing Multiple Experiments

3.3.1 Aggregation of Experiments
--------------------------------

By default, the data for multiple experiments is aggregrated and the
display commands shows these combined results.

   For example, we can aggregate the data for our single and dual thread
experiments.  Below is the script we used for this:

     # Define the metrics
     metrics e.%totalcpu
     # Limit the output to 10 lines
     limit 10
     # Get the list with experiments
     experiment_list
     # Get the function overview
     functions

   With the exception of the 'experiment_list' command, all commands
used have been discussed earlier.

   The 'experiment_list' command provides a list of the experiments that
have been loaded.  This is is used to verify we are looking at the
experiments we intend to aggregate.

     $ gprofng display text -script my-script-agg mxv.1.thr.er mxv.2.thr.er

   With the command above, we get the following output:

     # Define the metrics
     Current metrics: e.%totalcpu:name
     Current Sort Metric: Exclusive Total CPU Time ( e.%totalcpu )
     # Limit the output to 10 lines
     Print limit set to 10
     # Get the list with experiments
     ID Sel   PID Experiment
     == === ===== ============
      1 yes 30591 mxv.1.thr.er
      2 yes 11629 mxv.2.thr.er
     # Get the function overview
     Functions sorted by metric: Exclusive Total CPU Time
     
     Excl. Total    Name
     CPU
      sec.      %
     4.533 100.00   <Total>
     4.306  94.99   mxv_core
     0.105   2.31   init_data
     0.053   1.17   erand48_r
     0.027   0.59   __drand48_iterate
     0.021   0.46   _int_malloc
     0.021   0.46   drand48
     0.001   0.02   sysmalloc
     0.      0.     __libc_start_main
     0.      0.     allocate_data

   The first five lines should look familiar.  The five lines following,
echo the comment line in the script and show the overview of the
experiments.  This confirms two experiments have been loaded and that
both are active.

   This is followed by the function overview.  The timings have been
summed up and the percentages are adjusted accordingly.  For example,
the total accumulated time is indeed 2.272 + 2.261 = 4.533 seconds.


File: gprofng.info,  Node: Comparison of Experiments,  Prev: Aggregation of Experiments,  Up: Viewing Multiple Experiments

3.3.2 Comparison of Experiments
-------------------------------

The support for multiple experiments really shines in comparison mode.
This feature is enabled through the command 'compare on' and is disabled
by setting 'compare off'.

   In comparison mode, the data for the various experiments is shown
side by side, as illustrated below where we compare the results for the
multithreaded experiments using one and two threads respectively:

     $ gprofng display text -compare on -functions mxv.1.thr.er mxv.2.thr.er

This produces the following output:

     Functions sorted by metric: Exclusive Total CPU Time
     
     mxv.1.thr.er  mxv.2.thr.er  mxv.1.thr.er  mxv.2.thr.er
     Excl. Total   Excl. Total   Incl. Total   Incl. Total    Name
     CPU           CPU           CPU           CPU
      sec.          sec.          sec.          sec.
     2.272         2.261         2.272         2.261          <Total>
     2.159         2.148         2.159         2.148          mxv_core
     0.054         0.051         0.102         0.104          init_data
     0.025         0.028         0.035         0.045          erand48_r
     0.013         0.008         0.048         0.053          drand48
     0.011         0.010         0.012         0.010          _int_malloc
     0.010         0.017         0.010         0.017          __drand48_iterate
     0.001         0.            0.001         0.             sysmalloc
     0.            0.            0.114         0.114          __libc_start_main
     0.            0.            0.011         0.010          allocate_data
     0.            0.            0.001         0.             check_results
     0.            0.            2.159         2.148          collector_root
     0.            0.            2.159         2.148          driver_mxv
     0.            0.            0.114         0.114          main
     0.            0.            0.012         0.010          malloc

   This table is already helpful to more easily compare (two) profiles,
but there is more that we can do here.

   By default, in comparison mode, all measured values are shown.  Often
profiling is about comparing performance data.  It is therefore more
useful to look at differences, or ratios, using one experiment as a
reference.

   The values shown are relative to this difference.  For example if a
ratio is below one, it means the reference value was higher.

   This feature is supported on the 'compare' command.  In addition to
'on', or 'off', this command also supports 'delta', or 'ratio'.

   Usage of one of these two keywords enables the comparison feature and
shows either the difference, or the ratio, relative to the reference
data.

   In the example below, we use the same two experiments used in the
comparison above, but as before, the number of lines is restricted to 10
and we focus on the exclusive timings plus percentages.  For the
comparison part we are interested in the differences.

   This is the script that produces such an overview:

     # Define the metrics
     metrics e.%totalcpu
     # Limit the output to 10 lines
     limit 10
     # Set the comparison mode to differences
     compare delta
     # Get the function overview
     functions

   Assuming this script file is called 'my-script-comp', this is how we
get the table displayed on our screen:

     $ gprofng display text -script my-script-comp mxv.1.thr.er mxv.2.thr.er

   Leaving out some of the lines printed, but we have seen before, we
get the following table:

     mxv.1.thr.er  mxv.2.thr.er
     Excl. Total   Excl. Total     Name
     CPU           CPU
      sec.      %   delta      %
     2.272 100.00  -0.011 100.00   <Total>
     2.159  95.00  -0.011  94.97   mxv_core
     0.054   2.37  -0.003   2.25   init_data
     0.025   1.10  +0.003   1.23   erand48_r
     0.013   0.57  -0.005   0.35   drand48
     0.011   0.48  -0.001   0.44   _int_malloc
     0.010   0.44  +0.007   0.75   __drand48_iterate
     0.001   0.04  -0.001   0.     sysmalloc
     0.      0.    +0.      0.     __libc_start_main
     0.      0.    +0.      0.     allocate_data

   It is now easy to see that the CPU times for the most time consuming
functions in this code are practically the same.

   While in this case we used the delta as a comparison,

   Note that the comparison feature is supported at the function,
source, and disassembly level.  There is no practical limit on the
number of experiments that can be used in a comparison.


File: gprofng.info,  Node: Profile Hardware Event Counters,  Next: Java Profiling,  Prev: Viewing Multiple Experiments,  Up: A Mini Tutorial

3.4 Profile Hardware Event Counters
===================================

Many processors provide a set of hardware event counters and 'gprofng'
provides support for this feature.  *Note Hardware Event Counters
Explained:: for those readers that are not familiar with such counters
and like to learn more.

   In this section we explain how to get the details on the event
counter support for the processor used in the experiment(s), and show
several examples.

* Menu:

* Getting Information on the Counters Supported::
* Examples Using Hardware Event Counters::


File: gprofng.info,  Node: Getting Information on the Counters Supported,  Next: Examples Using Hardware Event Counters,  Up: Profile Hardware Event Counters

3.4.1 Getting Information on the Counters Supported
---------------------------------------------------

The first step is to check if the processor used for the experiments is
supported by 'gprofng'.

   The '-h' option on 'gprofng collect app' will show the event counter
information:

     $ gprofng collect app -h

   In case the counters are supported, a list with the events is
printed.  Otherwise, a warning message will be issued.

   For example, below we show this command and the output on an Intel
Xeon Platinum 8167M (aka "Skylake") processor.  The output has been
split into several sections and each section is commented upon
separately.

     Run "gprofng collect app --help" for a usage message.
     
     Specifying HW counters on `Intel Arch PerfMon v2 on Family 6 Model 85' 
     (cpuver=2499):
     
       -h {auto|lo|on|hi}
     	turn on default set of HW counters at the specified rate
       -h <ctr_def> [-h <ctr_def>]...
       -h <ctr_def>[,<ctr_def>]...
     	specify HW counter profiling for up to 4 HW counters

   The first line shows how to get a usage overview.  This is followed
by some information on the target processor.

   The next five lines explain in what ways the '-h' option can be used
to define the events to be monitored.

   The first version shown above enables a default set of counters.
This default depends on the processor this command is executed on.  The
keyword following the '-h' option defines the sampling rate:

'auto'
     Match the sample rate of used by clock profiling.  If the latter is
     disabled, Use a per thread sampling rate of approximately 100
     samples per second.  This setting is the default and preferred.

'on'
     Use a per thread sampling rate of approximately 100 samples per
     second.

'lo'
     Use a per thread sampling rate of approximately 10 samples per
     second.

'hi'
     Use a per thread sampling rate of approximately 1000 samples per
     second.

   The second and third variant define the events to be monitored.  Note
that the number of simultaneous events supported is printed.  In this
case we can monitor four events in a single profiling job.

   It is a matter of preference whether you like to use the '-h' option
for each event, or use it once, followed by a comma separated list.

   There is one slight catch though.  The counter definition below has
mandatory comma (',') between the event and the rate.  While a default
can be used for the rate, the comma cannot be omitted.  This may result
in a somewhat awkward counter definition in case the default sampling
rate is used.

   For example, the following two commands are equivalent.  Note the
double comma in the second command.  This is not a typo.

     $ gprofng collect app -h cycles -h insts ...
     $ gprofng collect app -h cycles,,insts ...

   In the first command this comma is not needed, because a comma
("','") immediately followed by white space may be omitted.

   This is why we prefer the this syntax and in the remainder will use
the first version of this command.

   The counter definition takes an event name, plus optionally one or
more attributes, followed by a comma, and optionally the sampling rate.
The output section below shows the formal definition.

       <ctr_def> == <ctr>[[~<attr>=<val>]...],[<rate>]

   The printed help then explains this syntax.  Below we have summarized
and expanded this output:

'<ctr>'
     The counter name must be selected from the available counters
     listed as part of the output printed with the '-h' option.  On most
     systems, if a counter is not listed, it may still be specified by
     its numeric value.

'~<attr>=<val>'
     This is an optional attribute that depends on the processor.  The
     list of supported attributes is printed in the output.  Examples of
     attributes are "user", or "system".  The value can given in decimal
     or hexadecimal format.  Multiple attributes may be specified, and
     each must be preceded by a ~.

'<rate>'

     The sampling rate is one of the following:

     'auto'
          This is the default and matches the rate used by clock
          profiling.  If clock profiling is disabled, use 'on'.

     'on'
          Set the per thread maximum sampling rate to ~100
          samples/second

     'lo'
          Set the per thread maximum sampling rate to ~10 samples/second

     'hi'
          Set the per thread maximum sampling rate to ~1000
          samples/second

     '<interval>'
          Define the sampling interval.  *Note Control the Sampling
          Frequency:: how to define this.

   After the section with the formal definition of events and counters,
a processor specific list is displayed.  This part starts with an
overview of the default set of counters and the aliased names supported
_on this specific processor_.

     Default set of HW counters:
     
         -h cycles,,insts,,llm
     
     Aliases for most useful HW counters:
     
      alias    raw name                   type units regs description
     
      cycles   unhalted-core-cycles   CPU-cycles 0123 CPU Cycles
      insts    instruction-retired        events 0123 Instructions Executed
      llm      llc-misses                 events 0123 Last-Level Cache Misses
      br_msp   branch-misses-retired      events 0123 Branch Mispredict
      br_ins   branch-instruction-retired events 0123 Branch Instructions

   The definitions given above may or may not be available on other
processors, but we try to maximize the overlap across alias sets.

   The table above shows the default set of counters defined for this
processor, and the aliases.  For each alias the full "raw" name is
given, plus the unit of the number returned by the counter (CPU cycles,
or a raw count), the hardware counter the event is allowed to be mapped
onto, and a short description.

   The last part of the output contains all the events that can be
monitored:

     Raw HW counters:
     
         name                                type      units regs description
     
         unhalted-core-cycles                     CPU-cycles 0123
         unhalted-reference-cycles                    events 0123
         instruction-retired                          events 0123
         llc-reference                                events 0123
         llc-misses                                   events 0123
         branch-instruction-retired                   events 0123
         branch-misses-retired                        events 0123
         ld_blocks.store_forward                      events 0123
         ld_blocks.no_sr                              events 0123
         ld_blocks_partial.address_alias              events 0123
         dtlb_load_misses.miss_causes_a_walk          events 0123
         dtlb_load_misses.walk_completed_4k           events 0123
     
         <many lines deleted>
     
         l2_lines_out.silent                          events 0123
         l2_lines_out.non_silent                      events 0123
         l2_lines_out.useless_hwpf                    events 0123
         sq_misc.split_lock                           events 0123
     
     See Chapter 19 of the "Intel 64 and IA-32 Architectures Software
     Developer's Manual Volume 3B: System Programming Guide"

   As can be seen, these names are not always easy to correlate to a
specific event of interest.  The processor manual should provide more
clarity on this.


File: gprofng.info,  Node: Examples Using Hardware Event Counters,  Prev: Getting Information on the Counters Supported,  Up: Profile Hardware Event Counters

3.4.2 Examples Using Hardware Event Counters
--------------------------------------------

The previous section may give the impression that these counters are
hard to use, but as we will show now, in practice it is quite simple.

   With the information from the '-h' option, we can easily set up our
first event counter experiment.

   We start by using the default set of counters defined for our
processor and we use 2 threads:

     $ exe=mxv-pthreads.exe
     $ m=3000
     $ n=2000
     $ exp=mxv.hwc.def.2.thr.er
     $ gprofng collect app -O $exp -h auto ./$exe -m $m -n $n -t 2

   The new option here is '-h auto'.  The 'auto' keyword enables
hardware event counter profiling and selects the default set of counters
defined for this processor.

   As before, we can display the information, but there is one practical
hurdle to take.  Unless we like to view all metrics recorded, we would
need to know the names of the events that have been enabled.  This is
tedious and also not portable in case we would like to repeat this
experiment on another processor.

   This is where the special 'hwc' metric comes very handy.  It
automatically expands to the active set of events used.

   With this, it is very easy to display the event counter values.  Note
that although the regular clock based profiling was enabled, we only
want to see the counter values.  We also request to see the percentages
and limit the output to the first 5 lines:

     $ exp=mxv.hwc.def.2.thr.er
     $ gprofng display text -metrics e.%hwc -limit 5 -functions $exp

     Current metrics: e.%cycles:e+%insts:e+%llm:name
     Current Sort Metric: Exclusive CPU Cycles ( e.%cycles )
     Print limit set to 5
     Functions sorted by metric: Exclusive CPU Cycles
     
     Excl. CPU     Excl. Instructions  Excl. Last-Level   Name
     Cycles        Executed            Cache Misses
      sec.      %                  %                 %
     2.691 100.00  7906475309 100.00   122658983 100.00   <Total>
     2.598  96.54  7432724378  94.01   121745696  99.26   mxv_core
     0.035   1.31   188860269   2.39       70084   0.06   erand48_r
     0.026   0.95    73623396   0.93      763116   0.62   init_data
     0.018   0.66    76824434   0.97       40040   0.03   drand48

   As we have seen before, the first few lines echo the settings.  This
includes a list with the hardware event counters used by default.

   The table that follows makes it very easy to get an overview where
the time is spent and how many of the target events have occurred.

   As before, we can drill down deeper and see the same metrics at the
source line and instruction level.  Other than using 'hwc' in the
metrics definitions, nothing has changed compared to the previous
examples:

     $ exp=mxv.hwc.def.2.thr.er
     $ gprofng display text -metrics e.hwc -source mxv_core $exp

   This is the relevant part of the output.  Since the lines get very
long, we have somewhat modified the lay-out:

        Excl. CPU Excl.        Excl.
        Cycles    Instructions Last-Level
         sec.     Executed     Cache Misses
                                              <Function: mxv_core>
        0.                 0          0   32. void __attribute__ ((noinline)) 
                                              mxv_core(...)
        0.                 0          0   33. {
        0.                 0          0   34.   for (uint64_t i=...) {
        0.                 0          0   35.     double row_sum = 0.0;
     ## 1.872     7291879319   88150571   36.     for (int64_t j=0; j<n; j++)
        0.725      140845059   33595125   37.        row_sum += A[i][j]*b[j];
        0.                 0          0   38.     c[i] = row_sum;
                                          39.    }
        0.                 0          0   40. }

   In a smiliar way we can display the event counter values at the
instruction level.  Again we have modified the lay-out due to page width
limitations:

     $ exp=mxv.hwc.def.2.thr.er
     $ gprofng display text -metrics e.hwc -disasm mxv_core $exp

        Excl. CPU Excl.        Excl.
        Cycles    Instructions Last-Level
         sec.     Executed     Cache Misses
                                                     <Function: mxv_core>
        0.                 0          0  [33] 4021ba: mov   0x8(%rsp),%r10
                                         34.   for (uint64_t i=...) {
        0.                 0          0  [34] 4021bf: cmp   %rsi,%rdi
        0.                 0          0  [34] 4021c2: jbe   0x37
        0.                 0          0  [34] 4021c4: ret
                                         35.       double row_sum = 0.0;
                                         36.       for (int64_t j=0; j<n; j++)
                                         37.         row_sum += A[i][j]*b[j];
        0.                 0          0  [37] 4021c5: mov   (%r8,%rdi,8),%rdx
        0.                 0          0  [36] 4021c9: mov   $0x0,%eax
        0.                 0          0  [35] 4021ce: pxor  %xmm1,%xmm1
        0.002       12804230     321394  [37] 4021d2: movsd (%rdx,%rax,8),%xmm0
        0.141       60819025    3866677  [37] 4021d7: mulsd (%r9,%rax,8),%xmm0
        0.582       67221804   29407054  [37] 4021dd: addsd %xmm0,%xmm1
     ## 1.871     7279075109   87989870  [36] 4021e1: add   $0x1,%rax
        0.002       12804210      80351  [36] 4021e5: cmp   %rax,%rcx
        0.                 0          0  [36] 4021e8: jne   0xffffffffffffffea
                                         38.       c[i] = row_sum;
        0.                 0          0  [38] 4021ea: movsd %xmm1,(%r10,%rdi,8)
        0.                 0          0  [34] 4021f0: add   $0x1,%rdi
        0.                 0          0  [34] 4021f4: cmp   %rdi,%rsi
        0.                 0          0  [34] 4021f7: jb    0xd
        0.                 0          0  [35] 4021f9: pxor  %xmm1,%xmm1
        0.                 0          0  [36] 4021fd: test  %rcx,%rcx
        0.                 0      80350  [36] 402200: jne   0xffffffffffffffc5
        0.                 0          0  [36] 402202: jmp   0xffffffffffffffe8
                                         39.   }
                                         40. }
        0.                 0          0  [40]  402204:  ret

   So far we have used the default settings for the event counters.  It
is quite straightforward to select specific counters.  For sake of the
example, let's assume we would like to count how many branch
instructions and retired memory load instructions that missed in the L1
cache have been executed.  We also want to count these events with a
high resolution.

   This is the command to do so:

     $ exe=mxv-pthreads.exe
     $ m=3000
     $ n=2000
     $ exp=mxv.hwc.sel.2.thr.er
     $ hwc1=br_ins,hi
     $ hwc2=mem_load_retired.l1_miss,hi
     $ gprofng collect app -O $exp -h $hwc1 -h $hwc2 $exe -m $m -n $n -t 2

   As before, we get a table with the event counts.  Due to the very
long name for the second counter, we have somewhat modified the output.

     $ gprofng display text -limit 10 -functions mxv.hwc.sel.2.thr.er

     Functions sorted by metric: Exclusive Total CPU Time
     Excl.     Incl.     Excl. Branch  Excl.                 Name
     Total     Total     Instructions  mem_load_retired.l1_miss
     CPU sec.  CPU sec.                Events
     2.597     2.597     1305305319    4021340               <Total>
     2.481     2.481     1233233242    3982327               mxv_core
     0.040     0.107       19019012       9003               init_data
     0.028     0.052       23023048      15006               erand48_r
     0.024     0.024       19019008       9004               __drand48_iterate
     0.015     0.067       11011009       2998               drand48
     0.008     0.010              0       3002               _int_malloc
     0.001     0.001              0          0               brk
     0.001     0.002              0          0               sysmalloc
     0.        0.001              0          0               __default_morecore

   When using event counters, the values could be very large and it is
not easy to compare the numbers.  As we will show next, the 'ratio'
feature is very useful when comparing such profiles.

   To demonstrate this, we have set up another event counter experiment
where we would like to compare the number of last level cache miss and
the number of branch instructions executed when using a single thread,
or two threads.

   These are the commands used to generate the experiment directories:

     $ exe=./mxv-pthreads.exe
     $ m=3000
     $ n=2000
     $ exp1=mxv.hwc.comp.1.thr.er
     $ exp2=mxv.hwc.comp.2.thr.er
     $ gprofng collect app -O $exp1 -h llm -h br_ins $exe -m $m -n $n -t 1
     $ gprofng collect app -O $exp2 -h llm -h br_ins $exe -m $m -n $n -t 2

   The following script has been used to get the tables.  Due to lay-out
restrictions, we have to create two tables, one for each counter.

     # Limit the output to 5 lines
     limit 5
     # Define the metrics
     metrics name:e.llm
     # Set the comparison to ratio
     compare ratio
     functions
     # Define the metrics
     metrics name:e.br_ins
     # Set the comparison to ratio
     compare ratio
     functions

   Note that we print the name of the function first, followed by the
counter data.  The new element is that we set the comparison mode to
'ratio'.  This divides the data in a column by its counterpart in the
reference experiment.

   This is the command using this script and the two experiment
directories as input:

     $ gprofng display text -script my-script-comp-counters \
       mxv.hwc.comp.1.thr.er \
       mxv.hwc.comp.2.thr.er

   By design, we get two tables, one for each counter:

     Functions sorted by metric: Exclusive Last-Level Cache Misses
     
                                   mxv.hwc.comp.1.thr.er  mxv.hwc.comp.2.thr.er
     Name                          Excl. Last-Level       Excl. Last-Level
                                   Cache Misses           Cache Misses
                                                              ratio
      <Total>                      122709276              x   0.788
      mxv_core                     121796001              x   0.787
      init_data                       723064              x   1.055
      erand48_r                       100111              x   0.500
      drand48                          60065              x   1.167
     
     Functions sorted by metric: Exclusive Branch Instructions
     
                                   mxv.hwc.comp.1.thr.er  mxv.hwc.comp.2.thr.er
     Name                          Excl. Branch           Excl. Branch
                                   Instructions           Instructions
                                                            ratio
      <Total>                      1307307316             x 0.997
      mxv_core                     1235235239             x 0.997
      erand48_r                      23023033             x 0.957
      drand48                        20020009             x 0.600
      __drand48_iterate              17017028             x 0.882

   A ratio less than one in the second column, means that this counter
value was smaller than the value from the reference experiment shown in
the first column.

   This kind of presentation of the results makes it much easier to
quickly interpret the data.

   We conclude this section with thread-level event counter overviews,
but before we go into this, there is an important metric we need to
mention.

   In case it is known how many instructions and CPU cycles have been
executed, the value for the IPC ("Instructions Per Clockycle") can be
computed.  *Note Hardware Event Counters Explained::.  This is a derived
metric that gives an indication how well the processor is utilized.  The
inverse of the IPC is called CPI.

   The 'gprofng display text' command automatically computes the IPC and
CPI values if an experiment contains the event counter values for the
instructions and CPU cycles executed.  These are part of the metric list
and can be displayed, just like any other metric.

   This can be verified through the 'metric_list' command.  If we go
back to our earlier experiment with the default event counters, we get
the following result.

     $ gprofng display text -metric_list mxv.hwc.def.2.thr.er

     Current metrics: e.totalcpu:i.totalcpu:e.cycles:e+insts:e+llm:name
     Current Sort Metric: Exclusive Total CPU Time ( e.totalcpu )
     Available metrics:
              Exclusive Total CPU Time: e.%totalcpu
              Inclusive Total CPU Time: i.%totalcpu
                  Exclusive CPU Cycles: e.+%cycles
                  Inclusive CPU Cycles: i.+%cycles
       Exclusive Instructions Executed: e+%insts
       Inclusive Instructions Executed: i+%insts
     Exclusive Last-Level Cache Misses: e+%llm
     Inclusive Last-Level Cache Misses: i+%llm
      Exclusive Instructions Per Cycle: e+IPC
      Inclusive Instructions Per Cycle: i+IPC
      Exclusive Cycles Per Instruction: e+CPI
      Inclusive Cycles Per Instruction: i+CPI
                                  Size: size
                            PC Address: address
                                  Name: name

   Among the other metrics, we see the new metrics for the IPC and CPI
listed.

   In the script below, we use this information and add the IPC and CPI
to the metrics to be displayed.  We also use a the thread filter to
display these values for the individual threads.

   This is the complete script we have used.  Other than a different
selection of the metrics, there are no new features.

     # Define the metrics
     metrics e.insts:e.%cycles:e.IPC:e.CPI
     # Sort with respect to cycles
     sort e.cycles
     # Limit the output to 5 lines
     limit 5
     # Get the function overview for all threads
     functions
     # Get the function overview for thread 1
     thread_select 1
     functions
     # Get the function overview for thread 2
     thread_select 2
     functions
     # Get the function overview for thread 3
     thread_select 3
     functions

   In the metrics definition on the second line, we explicitly request
the counter values for the instructions ('e.insts') and CPU cycles
('e.cycles') executed.  These names can be found in output from the
'metric_list' commad above.  In addition to these metrics, we also
request the IPC and CPI to be shown.

   As before, we used the 'limit' command to control the number of
functions displayed.  We then request an overview for all the threads,
followed by three sets of two commands to select a thread and display
the function overview.

   The script above is used as follows:

     $ gprofng display text -script my-script-ipc mxv.hwc.def.2.thr.er

   This script produces four tables.  We list them separately below, and
have left out the additional output.

   The first table shows the accumulated values across the three threads
that have been active.

     Functions sorted by metric: Exclusive CPU Cycles
     
     Excl.         Excl. CPU     Excl.  Excl.   Name
     Instructions  Cycles        IPC    CPI
     Executed       sec.      %
     7906475309    2.691 100.00  1.473  0.679   <Total>
     7432724378    2.598  96.54  1.434  0.697   mxv_core
      188860269    0.035   1.31  2.682  0.373   erand48_r
       73623396    0.026   0.95  1.438  0.696   init_data
       76824434    0.018   0.66  2.182  0.458   drand48

   This shows that IPC of this program is completely dominated by
function 'mxv_core'.  It has a fairly low IPC value of 1.43.

   The next table is for thread 1 and shows the values for the main
thread.

     Exp Sel Total
     === === =====
       1 1       3
     Functions sorted by metric: Exclusive CPU Cycles
     
     Excl.         Excl. CPU     Excl.  Excl.   Name
     Instructions  Cycles        IPC    CPI
     Executed       sec.      %
     473750931     0.093 100.00  2.552  0.392   <Total>
     188860269     0.035  37.93  2.682  0.373   erand48_r
      73623396     0.026  27.59  1.438  0.696   init_data
      76824434     0.018  18.97  2.182  0.458   drand48
     134442832     0.013  13.79  5.250  0.190   __drand48_iterate

   Although this thread hardly uses any CPU cycles, the overall IPC of
2.55 is not all that bad.

   Last, we show the tables for threads 2 and 3:

     Exp Sel Total
     === === =====
       1 2       3
     Functions sorted by metric: Exclusive CPU Cycles
     
     Excl.         Excl. CPU     Excl.  Excl.   Name
     Instructions  Cycles        IPC    CPI
     Executed       sec.      %
     3716362189    1.298 100.00  1.435  0.697   <Total>
     3716362189    1.298 100.00  1.435  0.697   mxv_core
              0    0.      0.    0.     0.      collector_root
              0    0.      0.    0.     0.      driver_mxv
     
     Exp Sel Total
     === === =====
       1 3       3
     Functions sorted by metric: Exclusive CPU Cycles
     
     Excl.         Excl. CPU     Excl.  Excl.   Name
     Instructions  Cycles        IPC    CPI
     Executed       sec.      %
     3716362189    1.300 100.00  1.433  0.698   <Total>
     3716362189    1.300 100.00  1.433  0.698   mxv_core
              0    0.      0.    0.     0.      collector_root
              0    0.      0.    0.     0.      driver_mxv

   It is seen that both execute the same number of instructions and take
about the same number of CPU cycles.  As a result, the IPC is the same
for both threads.


File: gprofng.info,  Node: Java Profiling,  Prev: Profile Hardware Event Counters,  Up: A Mini Tutorial

3.5 Java Profiling
==================

The 'gprofng collect app' command supports Java profiling.  The '-j on'
option can be used for this, but since this feature is enabled by
default, there is no need to set this explicitly.  Java profiling may be
disabled through the '-j off' option.

   The program is compiled as usual and the experiment directory is
created similar to what we have seen before.  The only difference with a
C/C++ application is that the program has to be explicitly executed by
java.

   For example, this is how to generate the experiment data for a Java
program that has the source code stored in file 'Pi.java':

     $ javac Pi.java
     $ gprofng collect app -j on -O pi.demo.er java Pi < pi.in

   Regarding which java is selected to generate the data, 'gprofng'
first looks for the JDK in the path set in either the 'JDK_HOME'
environment variable, or in the 'JAVA_PATH' environment variable.  If
neither of these variables is set, it checks for a JDK in the search
path (set in the PATH environment variable).  If there is no JDK in this
path, it checks for the java executable in '/usr/java/bin/java'.

   In case additional options need to be passed on to the JVM, the '-J
<string>' option can be used.  The string with the option(s) has to be
delimited by quotation marks in case there is more than one argument.

   The 'gprofng display text' command may be used to view the
performance data.  There is no need for any special options and the same
commands as previously discussed are supported.

   The 'viewmode' command *Note The Viewmode:: is very useful to examine
the call stacks.

   For example, this is how one can see the native call stacks.  For
lay-out purposes we have restricted the list to the first five entries:

     $ gprofng display text -limit 5 -viewmode machine -calltree pi.demo.er

     Print limit set to 5
     Viewmode set to machine
     Functions Call Tree. Metric: Attributed Total CPU Time
     
     Attr.      Name
     Total
     CPU sec.
     1.381      +-<Total>
     1.171        +-Pi.calculatePi(double)
     0.110        +-collector_root
     0.110        |  +-JavaMain
     0.070        |    +-jni_CallStaticVoidMethod

Note that the selection of the viewmode is echoed in the output.


File: gprofng.info,  Node: Terminology,  Next: Other Document Formats,  Prev: A Mini Tutorial,  Up: Top

4 Terminology
*************

Throughout this manual, certain terminology specific to profiling tools,
or 'gprofng', or even to this document only, is used.  In this chapter
we explain this terminology in detail.

* Menu:

* The Program Counter::                    What is a Program Counter?
* Inclusive and Exclusive Metrics::        An explanation of inclusive and exclusive metrics.
* Metric Definitions::                     Definitions associated with metrics.
* The Viewmode::                           Select the way call stacks are presented.
* The Selection List::                     How to define a selection.
* Load Objects and Functions::             The components in an application.
* The Concept of a CPU in gprofng:: The definition of a CPU.
* Hardware Event Counters Explained::      What are event counters?
* apath::                                  Our generic definition of a path.


File: gprofng.info,  Node: The Program Counter,  Next: Inclusive and Exclusive Metrics,  Up: Terminology

4.1 The Program Counter
=======================

The _Program Counter_, or PC for short, keeps track where program
execution is.  The address of the next instruction to be executed is
stored in a special purpose register in the processor, or core.

   The PC is sometimes also referred to as the _instruction pointer_,
but we will use Program Counter or PC throughout this document.


File: gprofng.info,  Node: Inclusive and Exclusive Metrics,  Next: Metric Definitions,  Prev: The Program Counter,  Up: Terminology

4.2 Inclusive and Exclusive Metrics
===================================

In the remainder, these two concepts occur quite often and for lack of a
better place, they are explained here.

   The _inclusive_ value for a metric includes all values that are part
of the dynamic extent of the target function.  For example if function
'A' calls functions 'B' and 'C', the inclusive CPU time for 'A' includes
the CPU time spent in 'B' and 'C'.

   In contrast with this, the _exclusive_ value for a metric is computed
by excluding the metric values used by other functions called.  In our
imaginary example, the exclusive CPU time for function 'A' is the time
spent outside calling functions 'B' and 'C'.

   In case of a _leaf function_, the inclusive and exclusive values for
the metric are the same since by definition, it is not calling any other
function(s).

   Why do we use these two different values?  The inclusive metric shows
the most expensive path, in terms of this metric, in the application.
For example, if the metric is cache misses, the function with the
highest inclusive metric tells you where most of the cache misses come
from.

   Within this branch of the application, the exclusive metric points to
the functions that contribute and help to identify which part(s) to
consider for further analysis.


File: gprofng.info,  Node: Metric Definitions,  Next: The Viewmode,  Prev: Inclusive and Exclusive Metrics,  Up: Terminology

4.3 Metric Definitions
======================

The metrics to be shown are highly customizable.  In this section we
explain the definitions associated with metrics.

   The 'metrics' command takes a colon (:) separated list with special
keywords.  This keyword consists of the following three fields:
'<flavor>''<visibility>''<metric_name>'.

   The _<flavor>_ field is either an 'e' for "exclusive", or 'i' for
"inclusive".  The '<metric_name>' field is the name of the metric
request.  The _<visibility>_ field consists of one ore more characters
from the following table:

'.'
     Show the metric as time.  This applies to timing metrics and
     hardware event counters that measure cycles.  Interpret as '+' for
     other metrics.

'%'
     Show the metric as a percentage of the total value for this metric.

'+'
     Show the metric as an absolute value.  For hardware event counters
     this is the event count.  Interpret as '.' for timing metrics.

'|'
     Do not show any metric value.  Cannot be used with other visibility
     characters.


File: gprofng.info,  Node: The Viewmode,  Next: The Selection List,  Prev: Metric Definitions,  Up: Terminology

4.4 The Viewmode
================

There are different ways to view a call stack in Java.  In 'gprofng',
this is called the _viewmode_ and the setting is controlled through a
command with the same name.

   The 'viewmode' command takes one of the following keywords:

'user'
     This is the default and shows the Java call stacks for Java
     threads.  No call stacks for any housekeeping threads are shown.
     The function list contains a function '<JVM-System>' that
     represents the aggregated time from non-Java threads.  When the JVM
     software does not report a Java call stack, time is reported
     against the function '<no Java callstack recorded>'.

'expert'
     Show the Java call stacks for Java threads when the Java code from
     the user is executed and machine call stacks when JVM code is
     executed, or when the JVM software does not report a Java call
     stack.  Show the machine call stacks for housekeeping threads.

'machine'
     Show the actual native call stacks for all threads.


File: gprofng.info,  Node: The Selection List,  Next: Load Objects and Functions,  Prev: The Viewmode,  Up: Terminology

4.5 The Selection List
======================

Several commands allow the user to specify a subset of a list.  For
example, to select specific threads from all the threads that have been
used when conducting the experiment(s).

   Such a selection list (or "list" in the remainder of this section)
can be a single number, a contiguous range of numbers with the start and
end numbers separated by a hyphen ('-'), a comma-separated list of
numbers and ranges, or the 'all' keyword.  Lists must not contain
spaces.

   Each list can optionally be preceded by an experiment list with a
similar format, separated from the list by a colon (:).  If no
experiment list is included, the list applies to all experiments.

   Multiple lists can be concatenated by separating the individual lists
by a plus sign.

   These are some examples of various filters using a list:

'thread_select 1'
     Select thread 1 from all experiments.

'thread_select all:1'
     Select thread 1 from all experiments.

'thread_select 1:1+2:2'
     Select thread 1 from experiment 1 and thread 2 from experiment 2.

'cpu_select all:1,3,5'
     Selects cores 1, 3, and 5 from all experiments.

'cpu_select 1,2:all'
     Select all cores from experiments 1 and 2, as listed by the 'by
     exp_list' command.


File: gprofng.info,  Node: Load Objects and Functions,  Next: The Concept of a CPU in gprofng,  Prev: The Selection List,  Up: Terminology

4.6 Load Objects and Functions
==============================

An application consists of various components.  The source code files
are compiled into object files.  These are then glued together at link
time to form the executable.  During execution, the program may also
dynamically load objects.

   A _load object_ is defined to be an executable, or shared object.  A
shared library is an example of a load object in 'gprofng'.

   Each load object, contains a text section with the instructions
generated by the compiler, a data section for data, and various symbol
tables.  All load objects must contain an ELF symbol table, which gives
the names and addresses of all the globally known functions in that
object.

   Load objects compiled with the -g option contain additional symbolic
information that can augment the ELF symbol table and provide
information about functions that are not global, additional information
about object modules from which the functions came, and line number
information relating addresses to source lines.

   The term _function_ is used to describe a set of instructions that
represent a high-level operation described in the source code.  The term
also covers methods as used in C++ and in the Java programming language.

   In the 'gprofng' context, functions are provided in source code
format.  Normally their names appear in the symbol table representing a
set of addresses.  If the Program Counter (PC) is within that set, the
program is executing within that function.

   In principle, any address within the text segment of a load object
can be mapped to a function.  Exactly the same mapping is used for the
leaf PC and all the other PCs on the call stack.

   Most of the functions correspond directly to the source model of the
program, but there are exceptions.  This topic is however outside of the
scope of this guide.


File: gprofng.info,  Node: The Concept of a CPU in gprofng,  Next: Hardware Event Counters Explained,  Prev: Load Objects and Functions,  Up: Terminology

4.7 The Concept of a CPU in gprofng
===================================

In gprofng, there is the concept of a CPU. Admittedly, this is not the
best word to describe what is meant here and may be replaced in the
future.

   The word CPU is used in many of the displays.  In the context of
gprofng, it is meant to denote a part of the processor that is capable
of executing instructions and with its own state, like the program
counter.

   For example, on a contemporary processor, a CPU could be a core.  In
case hardware threads are supported within a core, it could be one of
those hardware threads.


File: gprofng.info,  Node: Hardware Event Counters Explained,  Next: apath,  Prev: The Concept of a CPU in gprofng,  Up: Terminology

4.8 Hardware Event Counters Explained
=====================================

For quite a number of years now, many microprocessors have supported
hardware event counters.

   On the hardware side, this means that in the processor there are one
or more registers dedicated to count certain activities, or "events".
Examples of such events are the number of instructions executed, or the
number of cache misses at level 2 in the memory hierarchy.

   While there is a limited set of such registers, the user can map
events onto them.  In case more than one register is available, this
allows for the simultaenous measurement of various events.

   A simple, yet powerful, example is to simultaneously count the number
of CPU cycles and the number of instructions excuted.  These two numbers
can then be used to compute the _IPC_ value.  IPC stands for
"Instructions Per Clockcycle" and each processor has a maximum.  For
example, if this maximum number is 2, it means the processor is capable
of executing two instructions every clock cycle.

   Whether this is actually achieved, depends on several factors,
including the instruction characteristics.  However, in case the IPC
value is well below this maximum in a time critical part of the
application and this cannot be easily explained, further investigation
is probably warranted.

   A related metric is called _CPI_, or "Clockcycles Per Instruction".
It is the inverse of the CPI and can be compared against the theoretical
value(s) of the target instruction(s).  A significant difference may
point at a bottleneck.

   One thing to keep in mind is that the value returned by a counter can
either be the number of times the event occured, or a CPU cycle count.
In case of the latter it is possible to convert this number to time.

   This is often easier to interpret than a simple count, but there is
one caveat to keep in mind.  The CPU frequency may not have been
constant while the experimen was recorded and this impacts the time
reported.

   These event counters, or "counters" for short, provide great insight
into what happens deep inside the processor.  In case higher level
information does not provide the insight needed, the counters provide
the information to get to the bottom of a performance problem.

   There are some things to consider though.

   * The event definitions and names vary across processors and it may
     even happen that some events change with an update.  Unfortunately
     and this is luckily rare, there are sometimes bugs causing the
     wrong count to be returned.

     In 'gprofng', some of the processor specific event names have an
     alias name.  For example 'insts' measures the instructions
     executed.  These aliases not only makes it easier to identify the
     functionality, but also provide portability of certain events
     across processors.

   * Another complexity is that there are typically many events one can
     monitor.  There may up to hundreds of events available and it could
     require several experiments to zoom in on the root cause of a
     performance problem.

   * There may be restrictions regarding the mapping of event(s) onto
     the counters.  For example, certain events may be restricted to
     specific counters only.  As a result, one may have to conduct
     additional experiments to cover all the events of interest.

   * The names of the events may also not be easy to interpret.  In such
     cases, the description can be found in the architecture manual for
     the processor.

   Despite these drawbacks, hardware event counters are extremely useful
and may even turn out to be indispensable.


File: gprofng.info,  Node: apath,  Prev: Hardware Event Counters Explained,  Up: Terminology

4.9 What is <apath>?
====================

In most cases, 'gprofng' shows the absolute pathnames of directories.
These tend to be rather long, causing display issues in this document.

   Instead of wrapping these long pathnames over multiple lines, we
decided to represent them by the '<apath>' symbol, which stands for "an
absolute pathname".

   Note that different occurrences of '<apath>' may represent different
absolute pathnames.


File: gprofng.info,  Node: Other Document Formats,  Next: Index,  Prev: Terminology,  Up: Top

5 Other Document Formats
************************

This document is written in Texinfo and the source text is made
available as part of the binutils distribution.  The file name is
'gprofng.texi' and can be found in subdirectory 'doc' under directory
'gprofng' in the top level directory.

   This file can be used to generate the document in the 'info', 'html',
and 'pdf' formats.  The default installation procedure creates a file in
the 'info' format and stores it in the documentation section of
binutils.

   The probably easiest way to generate a different format from this
Texinfo document is to go to the distribution directory that was created
when the tools were built.  This is either the default distribution
directory, or the one that has been set with the '--prefix' option as
part of the 'configure' command.  In this example we symbolize this
location with '<dist>'.

   The make file called 'Makefile' in directory '<dist>/gprofng/doc'
supports several commands to generate this document in different
formats.  We recommend to use these commands.

   They create the file(s) and install it in the documentation directory
of binutils, which is '<dist>/share/doc' in case 'html' or 'pdf' is
selected and '<dist>/share/info' for the file in the 'info' format.

   To generate this document in the requested format and install it in
the documentation directory, the commands below should be executed.  In
this notation, '<format>' is one of 'info', 'html', or 'pdf':

     $ cd <dist>/gprofng/doc
     $ make install-<format>

Some things to note:

   * For the 'pdf' file to be generated, the TeX document formatting
     software is required and the relevant commmands need to be included
     in the search path.  An example of a popular TeX implementation is
     _TexLive_.  It is beyond the scope of this document to go into the
     details of installing and using TeX, but it is well documented
     elsewhere.

   * Instead of generating a single file in the 'html' format, it is
     also possible to create a directory with individual files for the
     various chapters.  To do so, remove the use of '--no-split' in
     variable 'MAKEINFOHTML' in the make file in the 'doc' directory.

   * The make file also supports commands to only generate the file in
     the desired format and not move them to the documentation
     directory.  This is accomplished through the 'make <format>'
     command.


File: gprofng.info,  Node: Index,  Prev: Other Document Formats,  Up: Top

Index
*****

[index]
* Menu:

* Command line mode:                     A First Profile.     (line  39)
* Commands, calltree:                    The Call Tree.       (line  10)
* Commands, compare delta:               Comparison of Experiments.
                                                              (line  52)
* Commands, compare on/off:              Comparison of Experiments.
                                                              (line   7)
* Commands, compare on/off <1>:          Comparison of Experiments.
                                                              (line  51)
* Commands, compare ratio:               Comparison of Experiments.
                                                              (line  52)
* Commands, compare ratio <1>:           Examples Using Hardware Event Counters.
                                                              (line 166)
* Commands, cpus:                        Commands Specific to Multithreading.
                                                              (line 177)
* Commands, cpu_list:                    Commands Specific to Multithreading.
                                                              (line 176)
* Commands, disasm:                      The Disassembly View.
                                                              (line   8)
* Commands, experiment_list:             Aggregation of Experiments.
                                                              (line  21)
* Commands, fsingle:                     Information on Load Objects.
                                                              (line  10)
* Commands, fsingle <1>:                 Information on Load Objects.
                                                              (line  36)
* Commands, fsummary:                    Information on Load Objects.
                                                              (line  10)
* Commands, fsummary <1>:                Information on Load Objects.
                                                              (line  62)
* Commands, functions:                   A First Profile.     (line  44)
* Commands, header:                      More Information on the Experiment.
                                                              (line  10)
* Commands, header <1>:                  Control the Sampling Frequency.
                                                              (line  59)
* Commands, limit:                       Control the Number of Lines in the Output.
                                                              (line   6)
* Commands, lines:                       The Source Code View.
                                                              (line  68)
* Commands, metrics:                     Display and Define the Metrics.
                                                              (line  11)
* Commands, metrics <1>:                 Display and Define the Metrics.
                                                              (line  38)
* Commands, metrics <2>:                 Metric Definitions.  (line   9)
* Commands, metric_list:                 Display and Define the Metrics.
                                                              (line  10)
* Commands, metric_list <1>:             Display and Define the Metrics.
                                                              (line  19)
* Commands, metric_list <2>:             Examples Using Hardware Event Counters.
                                                              (line 261)
* Commands, objects:                     Information on Load Objects.
                                                              (line  10)
* Commands, overview:                    More Information on the Experiment.
                                                              (line  54)
* Commands, pcs:                         The Disassembly View.
                                                              (line  73)
* Commands, script:                      Scripting.           (line  11)
* Commands, sort:                        Sorting the Performance Data.
                                                              (line   6)
* Commands, source:                      The Source Code View.
                                                              (line  12)
* Commands, threads:                     Commands Specific to Multithreading.
                                                              (line  35)
* Commands, thread_list:                 Commands Specific to Multithreading.
                                                              (line  10)
* Commands, thread_select:               Commands Specific to Multithreading.
                                                              (line  64)
* Commands, thread_select <1>:           Commands Specific to Multithreading.
                                                              (line  88)
* Commands, viewmode:                    Java Profiling.      (line  37)
* Commands, viewmode <1>:                The Viewmode.        (line   6)
* Compare experiments:                   Comparison of Experiments.
                                                              (line  10)
* CPI:                                   Hardware Event Counters Explained.
                                                              (line  31)
* CPU:                                   The Concept of a CPU in gprofng.
                                                              (line   6)
* Default metrics:                       Display and Define the Metrics.
                                                              (line  34)
* ELF:                                   Load Objects and Functions.
                                                              (line  16)
* Exclusive metric:                      Inclusive and Exclusive Metrics.
                                                              (line  14)
* Experiment directory:                  Steps Needed to Create a Profile.
                                                              (line  21)
* Filters, Thread selection:             Commands Specific to Multithreading.
                                                              (line  64)
* Flavor field:                          Metric Definitions.  (line  13)
* Function:                              Load Objects and Functions.
                                                              (line  26)
* gprofng display html:                  Steps Needed to Create a Profile.
                                                              (line  46)
* gprofng display text:                  Steps Needed to Create a Profile.
                                                              (line  42)
* Hardware event counters, alias name:   Hardware Event Counters Explained.
                                                              (line  57)
* Hardware event counters, auto option:  Examples Using Hardware Event Counters.
                                                              (line  21)
* Hardware event counters, counter definition: Getting Information on the Counters Supported.
                                                              (line  85)
* Hardware event counters, description:  Hardware Event Counters Explained.
                                                              (line   6)
* Hardware event counters, hwc metric:   Examples Using Hardware Event Counters.
                                                              (line  31)
* Hardware event counters, IPC:          Examples Using Hardware Event Counters.
                                                              (line 250)
* Hardware event counters, variable CPU frequency: Hardware Event Counters Explained.
                                                              (line  40)
* Inclusive metric:                      Inclusive and Exclusive Metrics.
                                                              (line   9)
* Instruction level timings:             The Disassembly View.
                                                              (line   9)
* Instruction pointer:                   The Program Counter. (line  10)
* Interpreter mode:                      A First Profile.     (line  30)
* IPC:                                   Hardware Event Counters Explained.
                                                              (line  20)
* Java profiling, -J <string>:           Java Profiling.      (line  29)
* Java profiling, -j on/off:             Java Profiling.      (line   6)
* Java profiling, <JVM-System>:          The Viewmode.        (line  15)
* Java profiling, <no Java callstack recorded>: The Viewmode. (line  18)
* Java profiling, different view modes:  Java Profiling.      (line  37)
* Java profiling, JAVA_PATH:             Java Profiling.      (line  24)
* Java profiling, JDK_HOME:              Java Profiling.      (line  23)
* Leaf function:                         Inclusive and Exclusive Metrics.
                                                              (line  19)
* List specification:                    The Selection List.  (line   6)
* Load object:                           Load Objects and Functions.
                                                              (line  11)
* Load objects:                          Information on Load Objects.
                                                              (line  11)
* Metric name field:                     Metric Definitions.  (line  13)
* Miscellaneous , ##:                    The Source Code View.
                                                              (line  63)
* Miscellaneous, <apath>:                Information on Load Objects.
                                                              (line  16)
* Miscellaneous, <Total>:                A First Profile.     (line  86)
* mxv-pthreads.exe:                      The Example Program. (line  12)
* Options, -C:                           More Information on the Experiment.
                                                              (line  48)
* Options, -h:                           Getting Information on the Counters Supported.
                                                              (line   9)
* Options, -h <1>:                       Examples Using Hardware Event Counters.
                                                              (line  21)
* Options, -o:                           Name the Experiment Directory.
                                                              (line  15)
* Options, -O:                           Name the Experiment Directory.
                                                              (line  19)
* Options, -O <1>:                       A More Elaborate Example.
                                                              (line  12)
* Options, -p:                           The Call Tree.       (line  66)
* Options, -p <1>:                       Control the Sampling Frequency.
                                                              (line  18)
* PC:                                    The Program Counter. (line   6)
* PC <1>:                                Load Objects and Functions.
                                                              (line  32)
* PC sampling:                           Sampling versus Tracing.
                                                              (line   7)
* Posix Threads:                         The Example Program. (line   8)
* Program Counter:                       The Program Counter. (line   6)
* Program Counter <1>:                   Load Objects and Functions.
                                                              (line  32)
* Program Counter sampling:              Sampling versus Tracing.
                                                              (line   7)
* Pthreads:                              The Example Program. (line   8)
* Sampling interval:                     Control the Sampling Frequency.
                                                              (line  20)
* Selection list:                        The Selection List.  (line   6)
* Source level timings:                  The Source Code View.
                                                              (line  10)
* TeX:                                   Other Document Formats.
                                                              (line  40)
* Thread affinity:                       Commands Specific to Multithreading.
                                                              (line 162)
* Total CPU time:                        A First Profile.     (line  74)
* Viewmode:                              The Viewmode.        (line   6)
* Visibility field:                      Sorting the Performance Data.
                                                              (line   9)
* Visibility field <1>:                  Metric Definitions.  (line  13)



Tag Table:
Node: Top753
Node: Introduction3081
Node: Overview4358
Node: Main Features4999
Node: Sampling versus Tracing6739
Node: Steps Needed to Create a Profile9130
Node: A Mini Tutorial11317
Node: Getting Started12036
Node: The Example Program13686
Node: A First Profile14806
Node: The Source Code View19311
Node: The Disassembly View23807
Node: Display and Define the Metrics28496
Node: A First Customization of the Output30332
Node: Name the Experiment Directory32181
Node: Control the Number of Lines in the Output33278
Node: Sorting the Performance Data34037
Node: Scripting34979
Node: A More Elaborate Example35898
Node: The Call Tree38688
Node: More Information on the Experiment41429
Node: Control the Sampling Frequency44728
Node: Information on Load Objects47149
Node: Support for Multithreading50788
Node: Creating a Multithreading Experiment51428
Node: Commands Specific to Multithreading52941
Node: Viewing Multiple Experiments62347
Node: Aggregation of Experiments62924
Node: Comparison of Experiments65238
Node: Profile Hardware Event Counters69854
Node: Getting Information on the Counters Supported70562
Node: Examples Using Hardware Event Counters78162
Node: Java Profiling95859
Node: Terminology98228
Node: The Program Counter99240
Node: Inclusive and Exclusive Metrics99732
Node: Metric Definitions101185
Node: The Viewmode102370
Node: The Selection List103509
Node: Load Objects and Functions104911
Node: The Concept of a CPU in gprofng106925
Node: Hardware Event Counters Explained107686
Node: apath111478
Node: Other Document Formats112013
Node: Index114537

End Tag Table


Local Variables:
coding: utf-8
End: